

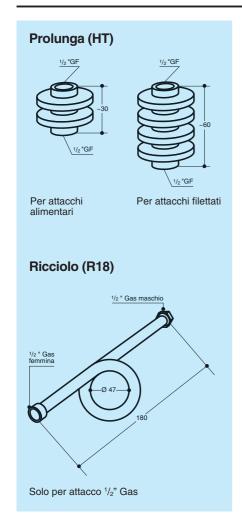
Trasmettitori di pressione da -1 a 1000 bar per uso industriale linea TP 10, 20, 30, 40

I trasmettitori serie TP utilizzano un sensore a straingauge di tipo piezoresistivo o ceramico. Il principio di misura prevede 4 estensimetri (diffusi su un chip di silicio o depositati su una membrana ceramica) che formano i lati di un ponte di Wheatstone. Ogni variazione della pressione viene rilevata dalla deformazione del sensore e si traduce in una tensione di uscita dal ponte proporzionale alla pressione applicata. Un circuito elettronico incorporato amplifica e converte la tensione in un segnale standard 4...20 mA. I trasmettitori piezoresistivi presentano una membrana in AISI 316 a contatto col fluido di processo; tra la membrana e il sensore c'è un riempimento di olio. Per i sensori ceramici il sensore è a diretto contatto con il fluido ed è compatibile con la maggior parte di fluidi, anche aggressivi, escluso quelli con soda.

- Classe di precisione: 0,5 oppure 0,25
- Campi di pressione:
 0...1000 bar relativi o assoluti 1 bar...0 (vuoto)
- Campo temperatura: fluido max -40...+125°C compensato tra 0...70°C
- Uscita: 4...20mA con collegamento a 2 fili
- Custodia: IP65 std, IP67 con cavo

Vantaggi

- Idonei per impieghi industriali
- Costruzione robusta e compatta
- Durata praticamente illimitata
- Assenza di isteresi e di parti in movimento
- Affidabili e di facile installazione
- Collegamento a 2 fili con alimentazione DC non stabilizzata



20021 Bollate - (Milano) Italy - Via Falzarego, 9/11 - Tel. +39 02 333 371 - Fax +39 02 350 4243 http://www.ascon.it e-mail info@ascon.it

Accessori

Tabella delle sovrappressioni

Campi pressione (bar)	TP10	TP2. C	TP2. P	TP3.,4. C	TP3.,4. P
		offset / rottura		offset / rottura	·
00,1			2		2
00,2			2		2
00,5		2,5/3,5	3	2/3	6
01	3	3,5/5	7	3/4	10
02	6	3,5/5	15	8/10	16
05	13	12,5/20	30	16/20	30
010	25	20/32	60	32/40	60
020	50	32/50	150	75/100	150
050	125	125/200	150	150/200	150
0100	250	312/500	500	300/400	450
0200	500	450/600	850	500/600	850
0500 per sens. piezores.			1500		1500
0400 per sens. ceramico	800	450/600		500/600	
01000 per sens. piezores			1500		1500
-0,10 (solo per vuoto)			-1+3		-1+3
-0,20 (solo per vuoto)			-1+3		-1+3
-0,50 (solo per vuoto)	2	2/4	-1+6	2/4	-1+6
-10 (solo per vuoto)	3	3/5	-1+10	3/5	-1+10
0,21	3				

NOTE PER L'USO

- Scelta del sensore Il sensore ceramico non è adatto nei seguenti casi:
 - Shock termici
 - Circuiti idraulici
 - Alte sovrappressioni (colpo d'ariete)
 - In presenza di soda o sui derivati
 - campo minimo 0...0,5 bar
 - campi di pressione sia positivi che negativi (es. -0,25...+0,25 bar)
- Sensore separato
 Viene usato in presenza di vibrazioni

sull'impianto. Temperatura max del fluidi 125°C. Prevedere l'uso della staffa di fissaggio (STUB/STOM).

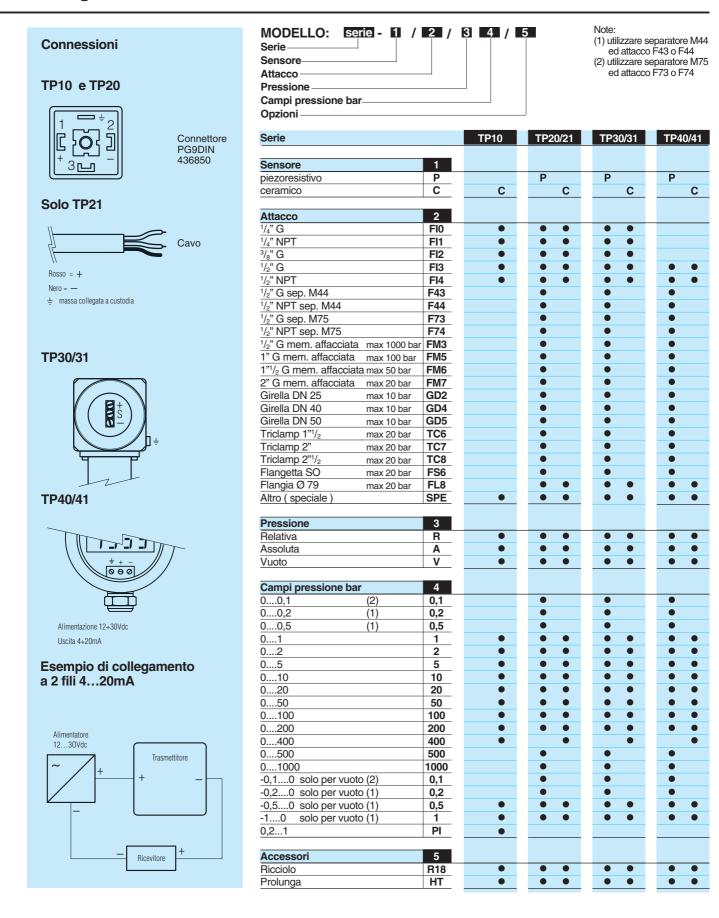
- Membrana affacciata
 Viene utilizzata con fluidi di processo di
 tipo alimentare, con solidi in
 sospensione e dove esista la possibilità
 di cristallizzazione o polimerizzazione.
- Separatore (M44/M75)
 Viene utilizzato per la misura di bassi campi di pressione (vedi tab. pag. 6) con temperatura del fluido di processo di max 140°C.

ACCESSORI

• Ricciolo (R18)

Viene utilizzato per temperatura del fluido di processo > 90°C fino a max 250°C. Può essere impiegato solo per fluidi privi di solidi in sospensione (es. vapore, acqua surrisc., etc). L'attacco del ricciolo al processo (1/2"G F) dovrà essere esterno alla eventuale coibentazione della tubazione e/o serbatoio.

- Prolunga (HT)
 Viene utilizzata quando la temperatura del fluido di processo > 90°C fino a max 180°C. È fornibile per tutti i tipi di attacco.
- Filtro smorzatore (solo per aria/azoto)
 Serve per ridurre notevolmente i picchi di pressione stabilizzando il segnale di uscita


Temp. max sensore piezoresistivo

Tipo di attacco	Temp. max				
Filettato	90°C				
con separatore	140°C				
con prolunga HT	180°C				
con ricciolo R18	250°C				
Girella, Triclamp, Flangia	110°C				
con prolunga HT	180°C				
Sensore separato	125°C				
In ogni caso verificare che la					

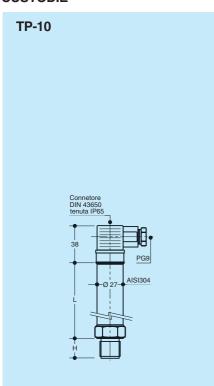
In ogni caso verificare che la temperatura ambiente dell'elettronica non superi i 55°C.

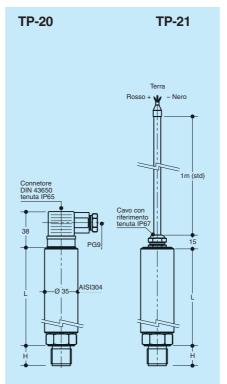
Connessioni ed esempi di collegamento

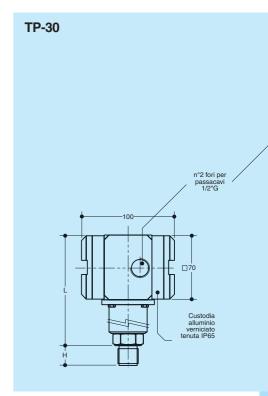
Modelli e testo d'ordine

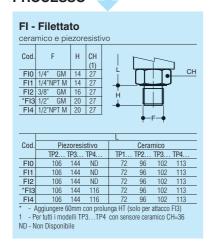
Tabella riassuntiva dati tecnici

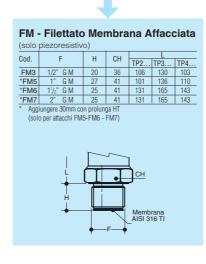
	TP10	TP20	TP30	TP40
Caratteristiche funzionali				
Alimentazione 1230 Vdc non stabilizzata	•	•	•	•
Protezione contro le inversioni di polarità	•	•	•	•
Segnale di uscita 420mA tecnica a due fili, 25mA max	•	•	•	•
Carico massimo: 0Ω con alimentazione a 12 Vdc	•	•	•	•
600 Ω con alimentazione a 24 Vdc	•	•	•	•
900 Ω con alimentazione a 30 Vdc	•	•	•	•
Tolleranza globale				
(comprende errori di taratura, non linearità e ripetibilità)	± 0,5 %	± 0,5 %	± 0,25 %	± 0,25 %
Deriva termica di zero nel campo compensato				
tra 0 e 70°C a temp. ambiente inferiore a	0,25%/10°C	0,2%/10°C	0,2%/10°C	0,2%/10°C
Deriva termica del campo scala		0.40/44000	0.40/4400	0.10/1100
tra 0 e 70°C inferiore a (Sensore piezoresistivo)	-	0,1%/10°C	0,1%/10°C	0,1%/10°C
(Sensore ceramico)	0,1%/10°C	0,1%/10°C	0,1%/10°C	0,1%/10°C
Campo di temperatura fluido: nominale	-1080°C	-1080°C	-1090°C	-1090°C
compensato	070°C	070°C	070°C	070°C
massimo piezoresistivo	-25125°C	-25125°C	-25125°C	-25125°C
massimo ceramico	-40125°C	-40125°C	-40125°C	-40125°C
Campo di temperatura ed umidità ambiente: durante il funzionamento	0 EE°C	055°C	055°C	055°C
durante il funzionamento	055°C 098 UR%	098 UR%	055 C 098 UR%	098 UR%
duranto lo etoccaggio	-4090°C	-4090°C	-4090°C	-4090°C
durante lo stoccaggio	< 98 UR%	< 98 UR%	< 98 UR%	< 98 UR%
Compatibilità elettromagnetica	- 50 011/0	< 30 OTT/0	- 50 011/0	- 30 011/0
secondo norme CE EN 50081-2 EN 50082-2	•	•	•	•
Isolamento: > 5 G Ω a 250 Vac	•	•	•	•
Campi di misura: vedi tabella	•	•	•	•
Caratteristiche costruttive				
Attacchi al processo: filettato				
flangiato				
triclamp				
girella				
Versione con sensore separato:			•	•
Materiale custodia	AISI 304	AISI 304		AISI 316
Materiale corpo ed attacchi	AISI 316	AISI 316	AISI 316	AISI 316
Membrana (*) (solo per piezoresistivo)		AISI 316TI	AISI 316TI	AISI 316T
Membrana affacciata (solo per piezoresistivo)		AISI 316TI	AISI 316TI	AISI 316T
Tenuta secondo DIN 40050	IP 65	IP 65	IP 65	IP 65
con uscita cavo		IP 67		
Vibrazioni: Shift di zero <0,3% FS (IEC 68-2-6)	•	•	•	•
Connessioni elettriche: 2 filetti 1/2" Gas			•	
connettore PG 9 DIN 43650	•	•		•
pressacavo e cavo da 1 mt.		•		
Sicurezza intrinseca: EExia IIC T5/T6 (opzione) Dimensioni: vedi disegni	•			

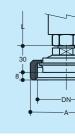

Dimensioni d'ingombro

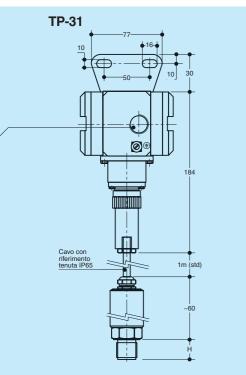


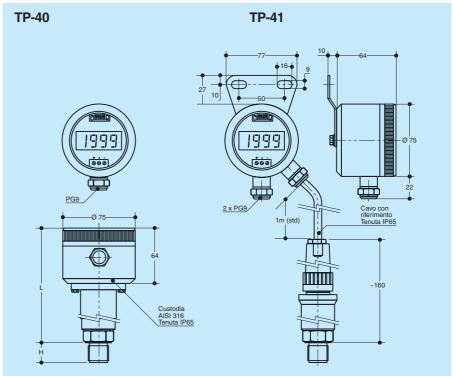


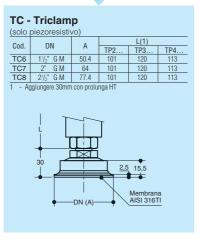

CUSTODIE

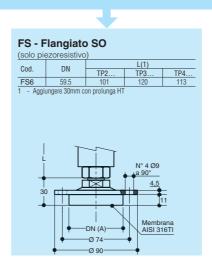


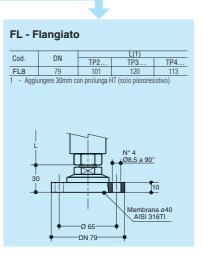

ATTACCHI AL PROCESSO











L(1) TP2... TP3... TP4... 101 120 113 101 120 113 101 120 113 101 120 113 gg HT Membrana AISI 316T1

