
Model V-Bar Operation & Maintenance Manual

insertion VORTEX flowmeter

- V-Bar-600 V-Bar-60S V-Bar-700 V-Bar-800 V-Bar-80S V-Bar-910
- V-Bar-960

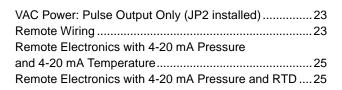
Engineering Measurements Company 303.651.0550 • 303.678.7152 Fax sales@emcoflow.com

Contents _____

Section 1: Product Introduction

Principle of Operation	1
Product Features:	1
V-Bar-600 Series Features:	1
V-Bar-700 Series Features:	2
V-Bar-800 Series Features:	2
V-Bar 900 Series Features:	2
Equipment Inspection	2
Identification Plate	2
Calibration Sheet	2
EZ-Logic Interface Map	3

Section 2: Installation Guidelines


Installation Guidelines	5
-------------------------	---

Section 3: Mechanical Installation

V-Bar-600/60S: Hot Tap Installation	7
V-Bar-600/60S: Cold Tap Installation	7
V-Bar-600/60S: Insertion Depth Calculation	
V-Bar-600/60S: Final Positioning	9
V-Bar-700: Installation for 2" NPT connection	9
V-Bar-700: Installation for Flanged Connection	9
V-Bar-700: Insertion Depth Calculation	10
V-Bar-700: Final Positioning	11
V-Bar-800/80S: Hot Tap Installation	
for Flanged Connection	12
V-Bar-800/80S: Cold Tap Installation	
for Flanged Connection	13
V-Bar-800/80S: Cold Tap Installation	
for 2" NPT Connection	13
V-Bar-800/80S: Insertion Depth Calculation	13
V-Bar-800/80S: Final Positioning	14
V-Bar-910/960: Hot Tap Installation	15
V-Bar-910/960: Cold Tap Installation	16
V-Bar-910/960: Insertion Depth Calculation	16
V-Bar-910/960: Final Positioning	17

Section 4: Electrical Installation

Hardware Configuration	19
Mounting Electronics	19
Field Wiring Access	20
Grounding the Meter	20
VAC Power Supply	20
VAC Power: Analog Output	
(JP1 installed or no jumpers)	20
VAC Power: Pulse Output Only (JP2 installed)	20
VAC Power: Pulse Output Only (No Jumpers)	20
VAC Power: Pressure and Temperature	
Transmitter Wiring	20
VAC Power Supply	23
VAC Power: Analog Output	
(JP1 installed or no jumpers)	23

Section 5: EZ-Logic Programming

Introduction to EZ-Logic	27
Movement Through the Interface	
How to Alter Real Number Data	
How to Alter Preset Data	
Top Display Menu	
Accessing Programming Submenus	
The Basic Menu	
The Output Menu	33
The Fluid Menu	
The Sensor Menu	
The Reset Menu	
The Service Menu	
The Password Menu	41
The Display Menu	41
Exiting Programming Submenus	
	Introduction to EZ-Logic Keypad Activation Movement Through the Interface How to Alter Real Number Data How to Alter Preset Data Top Display Menu Accessing Programming Submenus The Basic Menu The Output Menu The Fluid Menu The Sensor Menu The Sensor Menu The Service Menu The Password Menu The HART Menu Exiting Programming Submenus

Section 6: Troubleshooting and Service

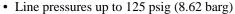
	Electronics Removal	43
	Sensor Functionality Test	46
	V-Bar-600/60S: Flowmeter Removal	
	V-Bar-600/60S: Sensor Removal	46
	V-Bar-700: Flowmeter Removal	
	V-Bar-700: Sensor Removal	
	V-Bar-800/80S: Flowmeter Removal	56
	V-Bar-800/80S: Sensor Removal	57
	V-Bar-910/960: Flowmeter Removal	61
	V-Bar-910/960: Sensor Removal	62
	TEM Wiring	66
	TEM: Zero and Span Adjustments	66
Ар	pendix A: V-Bar General Specifications	67

Appendix B: PT General Specifications	75

Appendix C: TEM	General Specifications	79

Appendix D: List of Figures and Tables	83
Appendix E: How to Reach Us	85
Glossary	86
Index	

Section 1: Product Introduction


Principle of Operation

The V-Bar is an insertion vortex flowmeter. Unlike a full-bore flowmeter, which replaces a section of pipe, an insertion meter is inserted into the pipe line through a hole cut into the pipe wall. When installed with an isolation valve, a retractable insertion flowmeter can be installed without process shutdown.

The V-Bar measures the volumetric flow rate by measuring the local velocity at the sensor insertion depth. The local velocity is determined by detecting the frequency at which vortices are alternately shed from the sensor's bluff body. The vortices pass the sensor wing, causing a slight deformation in the wing, which is detected by semiconductor strain gauges. The strain gauges generate an electrical frequency signal that is proportional to the local velocity.

The V-Bar's microprocessor-based electronics amplify and filter the sensor input. The local velocity is converted into an average velocity and then into an average flow rate in user-selectable engineering units. The electronics then provide a 4-20 mA and/or frequency output proportional to the flow rate. Standard local display alternately indicates flow rate and totalized flow.

- Menu-driven EZ-Logic[™] user interface
- Smart transmitter
- HART[®] communications protocol
- 4-20 mA and/or frequency/pulse outputs
- Line sizes from 3 to 80 in. (80 to 2000 mm)
- Negligible pressure loss
- Optional, integral pressure transmitter
- Optional, integral temperature transmitter

(Figure 1-3)

I EMCO

V-Bar-600 Series Features:

Product Features

- Temperature range from -40 to $400 \,^{\circ}\text{F}$
- (-40 to 204 °C)
- Hot tappable installation
- Bronze isolation valve included with each flowmeter
- Retractable using screw-thread-rising stem design

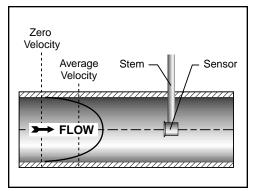


Figure 1-1. Principle of Operation. The local velocity is measured at the insertion depth, converted into an average velocity, and then converted into an average flow rate.

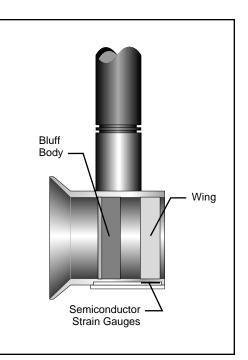


Figure 1-2. Cross Section of the V-Bar Sensor Head.

I	
	Mounting: 2" NPT with thread-o-letIntegral scale for accurate sensor positioning
V-Bar-700 Series Features: (Figure 1-4)	 Line pressures up to 2000 psig (138 barg) Temperature range from -40 to 500 °F (-40 to 260 °C) Mounting: 2" NPT or 2" raised face 150#, 300#, 600#, or 900# ANSI flanges
V-Bar-800 Series Features: (Figure 1-5)	 Line pressures up to 50 psig (3.45 barg) Temperature range from -40 to 400 °F (-40 to 204 °C) Hot tappable (when installed with an isolation valve) Manually retractable Mounting: 2" NPT or 2" raised face 150# ANSI flange
V-Bar-900 Series Features (Figure 1-6)	 According to flange rating, up to 900 psi Temperature range from -40 to 500 °F (-40 to 260 °C) Hot tappable (when installed with an isolation valve) Retractable using ACME, non-rising stem All stainless steel construction Integral scale for accurate sensor positioning Mounting: 2" raised face 150#, 300#, 600#, or 900# ANSI flanges
Equipment Inspection	Upon receiving your EMCO equipment, ver- ify that all materials on the packing list are present. Check for possible shipping damage and notify the freight carrier or your EMCO representative if any has occurred.
Identification Plate	A permanent identification plate (I.D.) is at- tached to your V-Bar flowmeter. This I.D. plate contains the following information: Model, Serial/W.O., date, pressure, tempera- ture, and tag (if supplied by customer). Ver- ify that this information is consistent with your metering requirements. This I.D. plate also shows applicable approvals. For CE approved meter/installations, see notes re- garding wiring, DC power and remote elec- tronics. (Figures 1-8 and 1-9)
Calibration Sheet	Save the calibration data sheet when unpack- ing your new meter. This is important for monitoring the performance of your meter.

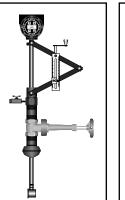
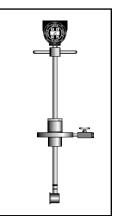



Figure 1-3. V-Bar-600 Series.

Figure 1-4. V-Bar-700 Series.

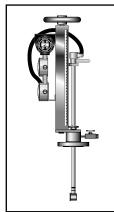


Figure 1-5. V-Bar-800 Series.

Figure 1-6. V-Bar-900 Series.

EZ-Logic Interface Map

EMCO

This map shows how the meter has been programmed at the factory. If your application changes, contact your EMCO representative for an updated map.

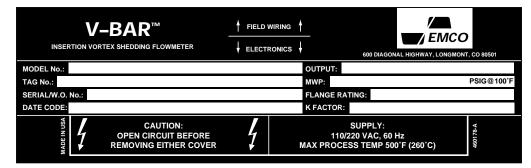


Figure 1-7. Identification Plate for a V-Bar with 110/220 VAC Power Supply

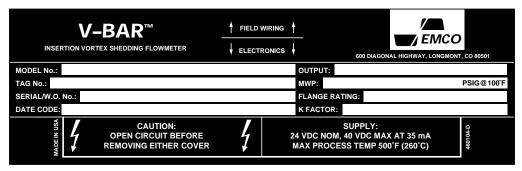


Figure 1-8. Identification Plate for a V-Bar with a 24 VAC Power Supply

Section 2: Installation Guidelines.

I EMCO

Not all plumbing is laid out with flowmetering in mind. For optimum performance, you must consider straight run requirements and the installation site relative to flow direction. Figures 2-1 through 2-5 illustrate useful examples of both proper and improper flowmeter installations. If you have special requirements, please consult the factory.

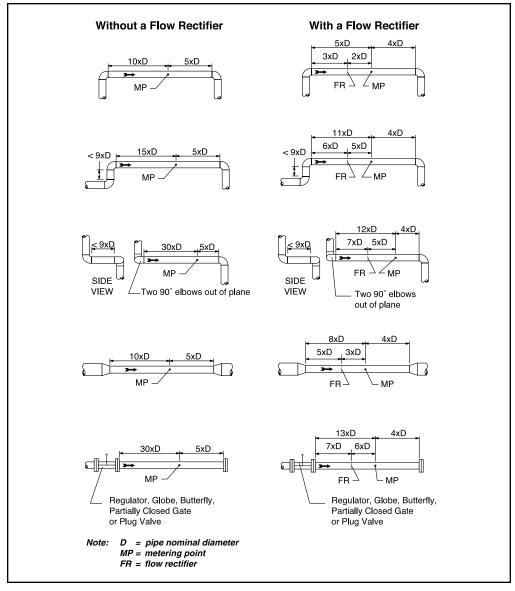


Figure 2-1. Straight Run Requirements. The straight run of pipe must have the same nominal diameter as the flowmeter body.

6 Section 2

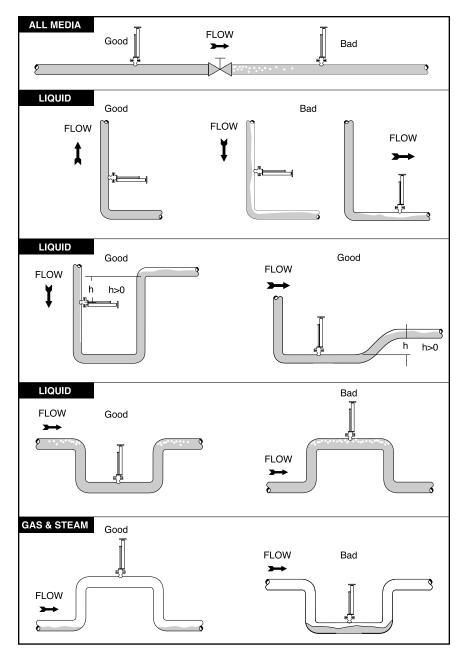
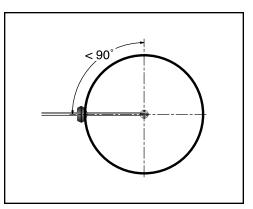



Figure 2-2. Meter Location. Recommended meter locations ensure that the pipe will always be filled with fluid.

Figure 2-3. Non-vertical Mounting. *If non-vertical mounting is necessary, the deviation from vertical should not exceed* 90°.

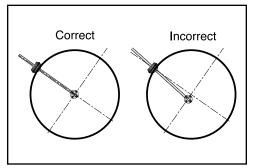
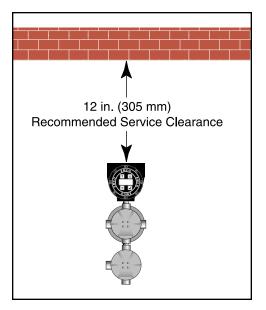



Figure 2-4. Meter Alignment. The flowmeter should be aligned perpendicular to the pipe to avoid measurement errors.

Figure 2-5. Overhead Clearance. A minimum of 12 in. (305 mm) of overhead clearance is recommended for ease of installation.

Section 3: Mechanical Installation

V-Bar-600/60S: Hot Tap Installation

V-Bar-600/60S:

I EMCO

Cold Tap Installation

A hot tap installation does not require process shutdown or line depressurization. Hot tapping must be performed by a trained professional. Local state regulations often require a hot tap permit. The manufacturer of the hot tap equipment and/or the contractor performing the hot tap is responsible for providing proof of such a permit.

Step 1. Weld the thread-o-let to the pipe.

Step 2. Attach the pipe nipple to the thread-o-let.

Step 3. Attach the 2" bronze, isolation valve to the pipe nipple. Install hot tap tool on to the isolation valve. Fully open the isolation valve. Hot tap pipe. Hole must be 1.875 inches in diameter. Close the isolation valve after hot tap tool has been retracted. Remove hot tap tool.

Step 4. Connect the flowmeter to the 2" isolation valve. Use teflon tape or PST on threads to improve seal and to prevent seizing. Verify that the ¹/₄" bleed valve is completely closed. Fully open the 2" bronze, isolation valve. If the meter is supplied with a pressure transmitter, open the ¹/₄" bleed valve.

To complete the mechanical installation, the sensor must be properly positioned in the pipe line. Follow the instructions for Insertion Depth Calculation and Final Positioning to complete the installation.

A cold tap installation requires process shut down and line depressurization.

Step 1. Tap pipe. Hole must be 1.875 inches in diameter.

Step 2. Weld the thread-o-let to the pipe.

Step 3. Connect the flowmeter to the thread-o-let. Use teflon tape or PST on threads to improve seal and to prevent seizing. Fully open the 2" bronze, isolation valve. If the

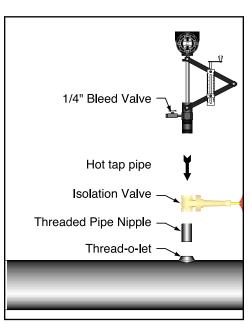


Figure 3-1. Hot Tap Installation for V-Bar-600/60S

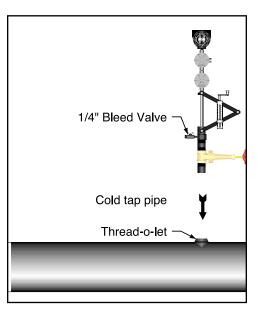


Figure 3-2. Cold Tap Installation for V-Bar-600/60S

Section 3

8

V-Bar-600/60S: Insertion Depth Calculation

meter is supplied with a pressure transmitter, open the $\frac{1}{4}$ " bleed valve.

To complete the mechanical installation, the sensor must be properly positioned in the pipe line. Follow the instructions for Insertion Depth Calculation and Final Positioning to complete the installation.

To properly position the sensor within the pipe, the scale reading must be calculated. The scale reading is the value to which the cursor points. The scale reading is equal to the insertion depth of the sensor. Use the following equation to calculate the scale reading:

Scale Reading = I + E + Wt

Where:

- I = For pipe sizes 10" and smaller, pipe internal diameter ÷ 2
 - = For pipe sizes 12" and larger, 5"
- E = The distance from the top of the stem housing to the outside pipe wall. This distance varies depending on how tightly the pipe nipples are screwed into the isolation valve and thread-o-let.
- Wt = The thickness of the pipe wall, which can be determined by measuring the disk cut out of the pipe from the tapping procedure or obtained from a piping handbook.

Example

A V-Bar-600 is to be installed on a 12" schedule 40 pipe. The following measurements have been obtained:

I = 5"E = 12.5"Wt = 0.406"

Scale reading = I + E + WtScale reading = 5" + 12.5" + 0.406 = 17.906"

Note: The distance the fully retracted sensor travels before becoming visible has been figured into the factory adjustment of the depth scale.

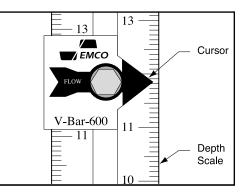


Figure 3-3. V-Bar-600/60S Scale Reading. The scale reading is the value to which the cursor points. The scale reading is equal to the insertion depth for the sensor.

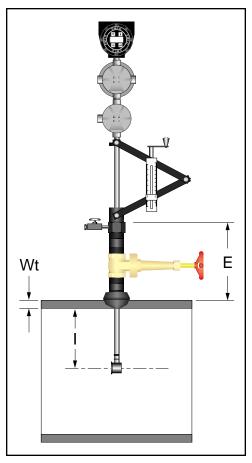


Figure 3-4. Insertion Depth Calculation for V-Bar-600/ 60S. The insertion depth is equal to the sum of the measured values for I, E, and Wt.

V-Bar-700: Installation for

2" NPT connection

V-Bar-700: Installation

I EMCO

for Flanged Connection

Carefully crank the retractor handle clock wise to insert the sensor down into the pipe until the calculated insertion depth Figure on the depth scale lines up with the cursor.

Caution: Do not force the stem into pipe. If the handle stops turning, retract and remove the meter from the pipe line. Verify that the hole is 1.875 inches in diameter and that the thread-o-let is centered on the hole.

Align the retractor bar assembly so that the flow direction arrow on the scale is parallel to the pipe and pointed downstream. (Figure 3-5).

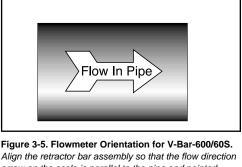
Lock the stem in position by tightening the orientation set-screw. (Figure 3-6)

Installation requires process shutdown and line depressurization. (Figure 3-7)

Step 1. Tap pipe. Hole must be 1.875 inches in diameter.

Step 2. Weld thread-o-let to pipe.

Step 3. Retract the stem by manually pulling the orientation levers so that the retaining ring is just below the base of the stem housing. Attach meter to thread-o-let. Use teflon tape or PST on threads to improve seal and prevent seizing. If the meter is supplied with a pressure transmitter, open the $\frac{1}{4}$ " bleed valve.


To complete the mechanical installation, the sensor must be properly positioned in the pipe line. Follow the instructions for Insertion Depth Calculation and Final Positioning to complete the installation.

Installation requires process shutdown and line depressurization. (Figure 3-8)

Step 1. Tap pipe. Hole must be 1.875 inches in diameter.

Step 2. Weld weld-o-let to pipe. Weld weld neck flange to weld-o-let.

Step 3. Retract the stem by manually pulling the orientation levers so that the retaining ring is just below the base of the stem hous-

13

13

V-Bar-600

11

/ ЕМСО

Align the retractor bar assembly so that the flow direction arrow on the scale is parallel to the pipe and pointed downstream.

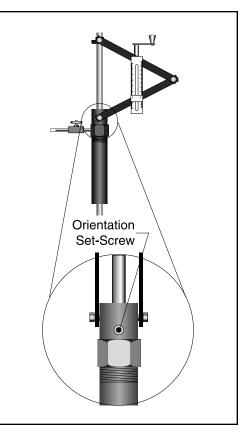


Figure 3-6. Orientation Set-Screw Location. To lock the stem into position, tighten the orientation set-screw.

Cursor

Depth

Scale

9

V-Bar-700: Insertion

Depth Calculation

ing. Attach meter to weld neck flange. If the meter is supplied with a pressure transmitter, open the $\frac{1}{4}$ " bleed valve.

To complete the mechanical installation, the sensor must be properly positioned in the pipe line. Follow the instructions for Insertion Depth Calculation and Final Positioning to complete the installation.

To properly position the sensor within the pipe, the insertion depth must be calculated. (See Figures 3-9 and 3-10). Use the following equation to calculate the insertion depth:

Insertion Depth = B = C - I - E - Wt

Where:

- B = The insertion depth
- C = The distance from the center of the sensor to the base of the condulet mount
- I = For pipe sizes 10" and smaller, pipe internal diameter $\div 2$
 - = For pipe sizes 12" and larger, 5"
- E = *For flanged connection*, the distance from the raised face of the flange to the outside pipe wall
 - = For 2" NPT connection, the distance from the top of the stem housing to the outside pipe wall
- Wt = The thickness of the pipe wall, which can be determined by measuring the disk cut out of the pipe from the tapping procedure or obtained from a piping handbook

Example

A V-Bar-700 is to be installed on a 12" schedule 40 pipe. The following measurements have been obtained:

$$\begin{split} B &= C - I - E - Wt \\ B &= 13.25'' - 5'' - 4.5'' - 0.406'' = 3.344'' \end{split}$$

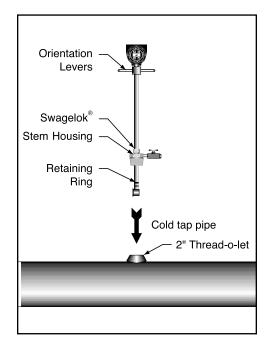


Figure 3-7. Installation for V-Bar-700 with 2" NPT Connection

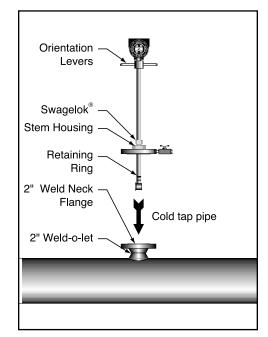


Figure 3-8. Installation for V-Bar-700 with Flanged Connection

V-Bar-700: Final Positioning

I EMCO

Manually insert the stem into the pipe until the calculated insertion depth is obtained. (Figure 3-11)

Caution: Do not force the stem into the pipe. If the stem insertion is blocked, retract and remove the meter from the pipe line. Verify that the hole is 1.875 inches in diameter and that the mounting connection is centered on the hole.

Align orientation levers so that they are parallel to the pipe with the flow direction arrow pointed downstream. (Figure 3-12)

Lock the stem in position by tightening the Swagelok[™] fitting.

Note: Once the fitting has been tightened, the stem position becomes permanent and cannot be changed. Verify insertion depth prior to final tightening of the fitting.

Warning: Do not loosen the Swagelok fitting under pressure. Doing so may cause serious injury.

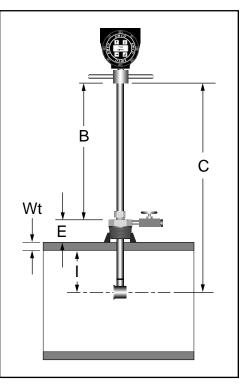


Figure 3-9. Insertion Depth Calculation for V-Bar-700 with 2" NPT Connection. The insertion depth is equal to the sum of the measured values for C, I, E, and Wt.

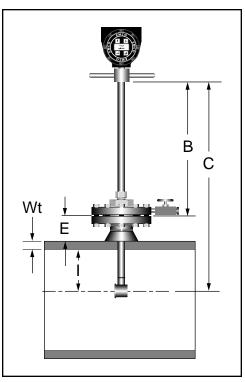


Figure 3-10. Insertion Depth Calculation for V-Bar-700 with Flanged Connection. The insertion depth is equal to the sum of the measured values for C, I, E, and Wt.

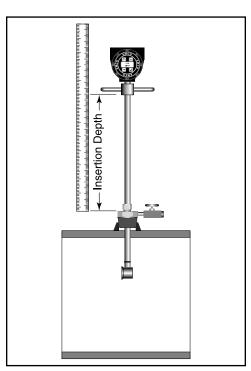


Figure 3-11. Final Positioning for V-Bar-700. Manually insert the stem into the pipe until the calculated insertion depth is obtained.

A hot tap installation does not require process shutdown or line depressurization. Hot tapping must be performed by a trained professional. Local state regulations often require a hot tap permit. The manufacturer of the hot tap equipment and/or the contractor performing the hot tap is responsible for providing proof of such permit. Stem will rise with line pressure; do not exceed 50 psig. (Figure 3-13)

Step 1. Weld weld-o-let to pipe.

Step 2. Weld weld neck flange to weld-o-let.

Step 3. Attach isolation valve to weld neck flange. Install hot tap tool on to the isolation valve. Fully open isolation valve. Hot tap pipe. Hole must be 1.875 inches in diameter. Close isolation valve after hot tap tool has been retracted. Remove hot tap tool.

Step 4. Connect meter to isolation valve. Verify that the $\frac{1}{4}$ " bleed valve is completely closed. Fully open isolation valve. If the meter is supplied with a pressure transmitter, open the $\frac{1}{4}$ " bleed valve.

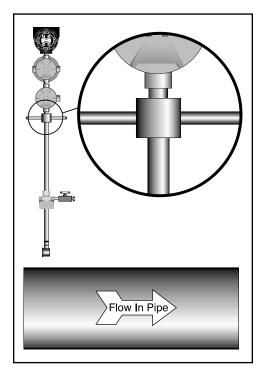


Figure 3-12. Flowmeter Alignment for V-Bar-700. Align the orientation levers so that they are parallel to the pipe with the flow direction arrow pointed downstream.

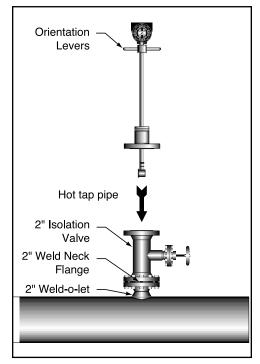


Figure 3-13. Hot Tap Installation for V-Bar-800/80S with Flanged Connection

V-Bar-800/80S: Hot Tap Installation for Flanged Connection

/ EMCO

	To complete the mechanical installation, the sensor must be properly positioned in the pipe line. Follow the instructions for Inser- tion Depth Calculation and Final Positioning to complete the installation.	Orientation
V-Bar-800/80S: Cold Tap Installation for Flanged Connection	Cold tap installation requires process shut- down and line depressurization. (Figure 3-14)	2" Weld Neck –
	<i>Step 1.</i> Tap pipe. Hole must be 1.875 inches in diameter.	2" Weld-o-let
	<i>Step 2.</i> Weld weld-o-let to pipe. Weld weld neck flange to weld-o-let.	
	<i>Step 3.</i> Connect meter to weld neck flange. If the meter is supplied with a pressure transmitter, open the $\frac{1}{4}$ " bleed valve.	Figure 3-14. Installation for V-Bar-800/80S with Flanged Connection
	To complete the mechanical installation, the sensor must be properly positioned in the pipe line. Follow the instructions for Inser- tion Depth Calculation and Final Positioning to complete the installation.	Orientation Levers
V-Bar-800/80S: Cold Tap Installation for 2" NPT Connection	Cold tap installation requires process shut- down and line depressurization. (Figure 3-15)	
	<i>Step 1.</i> Tap pipe. Hole must be 1.875 inches in diameter.	Cold tap pipe 2" Thread-o-let
	Step 2. Weld thread-o-let to pipe.	
	<i>Step 3.</i> Connect meter to thread-o-let. Use teflon tape or PST on threaded mounting connections to improve seal and prevent seizing. If the meter is supplied with a pressure transmitter, open the ¹ / ₄ " bleed valve.	Figure 3-15. Installation for V-Bar-800/80S with 2" NPT Connection
	To complete the mechanical installation, the sensor must be properly positioned in the pipe line. Follow the instructions for Inser- tion Depth Calculation and Final Positioning to complete the installation.	
V-Bar-800/80S: Insertion Depth Calculation	To properly position the sensor within the pipe, the insertion depth must be calculated. (See Figures 3-16 and 3-17) Use the follow- ing equation to calculate the insertion depth:	

Insertion Depth = B = C - I - E - Wt

Where:

- B = The insertion depth
- C = Distance from the center of the sensor to the base of the condulet mount
- I = For pipe sizes 10'' and smaller, pipe internal diameter $\div 2$
 - = For pipe sizes 12" and larger, 5"
- E = *For flanged connection*, the distance from the raised face of the flange to the outside pipe wall
 - = For 2" NPT connection, the distance from the top of the lock rings to the outside pipe wall
- Wt = The thickness of the pipe wall, which can be determined by measuring the disk cut out of the pipe from the tapping procedure or obtained from a piping handbook

Example

A V-Bar-800/80S is to be installed on a 12" schedule 40 pipe. The following measurements have been obtained:

$$\begin{split} B &= C - I - E - Wt \\ B &= 25'' - 5'' - 4.5'' - 0.406'' = 15.094'' \end{split}$$

Slightly loosen the two cap screws located in the two lock rings. (Figure 3-18)

Manually insert the stem into the pipe until the calculated insertion depth is obtained. (Figure 3-19)

V-Bar-800/80S:

Final Positioning

Caution: Do not force stem into pipe. If the stem insertion is blocked, retract and remove the meter from the pipe line. Verify that the hole is 1.875 inches in diameter and that the mounting connections are centered on the hole.

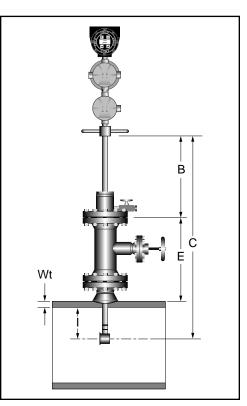


Figure 3-16. Insertion Depth Calculation for V-Bar-800/ 80S with Flanged Connection. The insertion depth is equal to the sum of the measured values for C, I, E, and Wt.

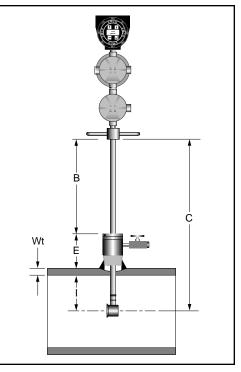
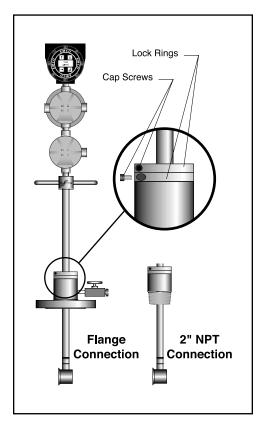
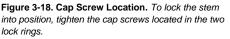




Figure 3-17. Insertion Depth Calculation for V-Bar-800/ 80S 2" NPT Connection. The insertion depth is equal to the sum of the measured values for C, I, E, and Wt.

Align orientation levers so that they are parallel to the pipe with the flow direction arrow pointed downstream. (Figure 3-20)

Lock the stem in position by tightening the two cap screws located on the two lock rings.

Note: Do not allow the orientation of the meter or the insertion depth to change after insertion is complete.

A hot tap installation does not require process shutdown or line depressurization. Hot tapping must be performed by a trained professional. Local state regulations often require a hot tap permit. The manufacturer of the hot tap equipment and/or the contractor performing the hot tap is responsible for providing proof of such permit. (Figure 3-21)

Step 1. Weld weld-o-let to pipe.

Step 2. Weld weld neck flange to weld-o-let.

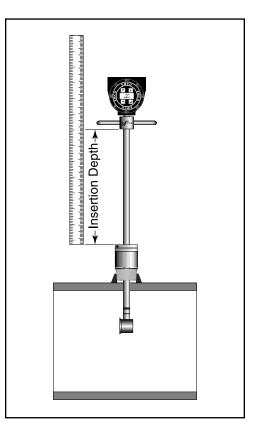
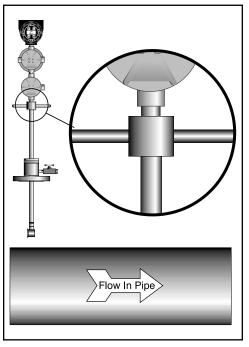



Figure 3-19. Final Positioning for V-Bar-800/80S. Manually insert the stem into the pipe until the calculated insertion depth is obtained.

Figure 3-20. Flowmeter Alignment for V-Bar-800/80S. Align the orientation levers so that they are parallel to the pipe with the flow direction arrow pointed downstream.

V-Bar-910/960: Hot Tap Installation

EMCO

	 Step 3. Attach isolation valve to weld neck flange. Install hot tap tool on to the isolation valve. Fully open valve. Hot tap pipe. Hole must be 1.875 inches in diameter. Close isolation valve after hot tap tool has been retracted. Remove hot tap tool. Step 4. Connect meter to isolation valve. Verify that the ¹/₄" bleed valve is completely closed. Fully open isolation valve. If the meter is supplied with a pressure transmitter, open ¹/₄" bleed valve. 	
	To complete the mechanical installation, the sensor must be properly positioned in the pipe line. Follow the instructions for Inser- tion Depth Calculation and Final Positioning to complete the installation.	Hot tap pipe 2" Isolation Valve 2" Weld Neck
V-Bar-910/960: Cold Tap Installation	Cold tap installation requires process shut- down and line depressurization. (Figure 3-22)	Flange 2" Weld-o-let
	<i>Step 1.</i> Tap pipe. Hole must be 1.875 inches in diameter.	Figure 3-21. Hot Tap Installation for V-Bar-910/960
	Step 2. Weld weld-o-let to pipe.	
	Step 3. Weld weld neck flange to weld-o-let.	<u>_</u>
	<i>Step 4.</i> Connect meter to weld neck flange. If the meter is supplied with a pressure transmitter, open the $\frac{1}{4}$ " bleed valve.	
	To complete the mechanical installation, the sensor must be properly positioned in the pipe line. Follow the instructions for Inser- tion Depth Calculation and Final Positioning to complete the installation.	
V-Bar-910/960: Insertion Depth Calculation	To properly position the sensor within the pipe, the scale reading must be calculated (Figures 3-23 and 3-24). The scale reading is the value to which the cursor should be	2" Weld Neck Flange 2" Weld-o-let
	pointing on the depth scale. Use the follow- ing equation to calculation the scale reading:	
	Scale Reading = $I + E + Wt$	
		Figure 3-22. Cold Tap Installation for V-Bar-910/960
	Where:	
	I = For pipe sizes 10" and smaller, pipe internal diameter $\div 2$	

pipe internal diameter ÷ 2
= For pipe sizes 12" and larger, 5"

- E = Distance from the raised face of the flange to the outside pipe wall
- Wt = The thickness of the pipe wall which can be determined by measuring the disk cut out of the pipe from the tapping procedure. This number can also be obtained from a piping handbook.

Example

A V-Bar-910 is to be installed on a 12" schedule 40 pipe. The following measurements have been obtained:

I = 5" E = 12.5"Wt = 0.406"

Scale reading = I + E + WtScale reading = 5" + 12.5" + 0.406" = 17.906"

Loosen the two packing gland nuts on the stem housing of the meter. (Figure 3-25)

Turn handwheel clockwise to insert the stem into the pipe. Do so until the calculated scale reading lines up with the 1.0 arrow on the retractor bar assembly.

Caution: Do not force stem into pipe. If the stem insertion is blocked, retract and remove the meter from the pipe line. Verify that the hole is 1.875 inches in diameter and that the mounting connections are centered on the hole.

Align the sensor by using the orientation lever so that the flow direction arrow is parallel to the pipe and pointed downstream. (Figure 3-26)

Tighten the packing gland nuts to stop leakage around the stem. Do not torque over 25 ft/lb.

Lock the stem into position by tightening the orientation lock screw.

Note: Do not allow the orientation of the meter or the insertion depth to change after insertion is complete.

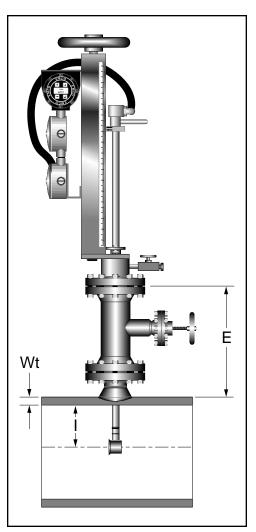


Figure 3-23. Insertion Depth Calculation for V-Bar-910/ 960. The insertion depth is equal to the sum of the measured values for I, E, and Wt.

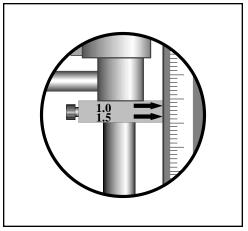


Figure 3-24. V-Bar-910/960 Scale Reading. The scale reading is the value to which the 1.0 arrow points. The scale reading is equal to the insertion depth for the sensor.

V-Bar-910/960: Final Positioning

I EMCO

Orientation Lever

Orientation Set Screw

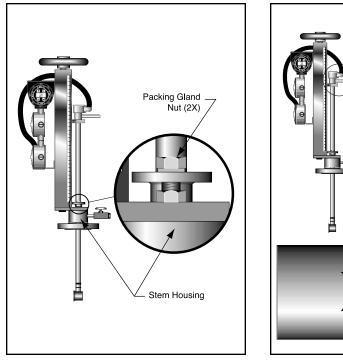
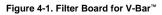


Figure 3-25. Packing Gland Nuts Location. To lock the stem into position, tighten the packing gland nuts located above the stem housing.

Figure 3-26. Flowmeter Orientation for V-Bar-910/960. Align the orientation lever so that the lever is parallel to the pipe and pointed downstream.


Flow In Pipe

Section 4: Electrical Installation

/ EMCO

	Wiring and conduit must be installed in accordance with national, local laws, stan- dards, codes, and industry practices to avoid personal injury or property damage from electrical shock, contact with live electrical systems, or ignition of combustible material or explosive gases, which can be ignited by electrical arcing.
Hardware Configuration	The flowmeter hardware is factory config- ured for each specific application. Additional configuration should not be required unless your application changes. Jumper position JP3 selects fluid type. JP3 should be installed for gas applications and removed for liquid applications. The installation of jumpers JP1 and JP2 on the filter board control the output selection. Jumper positions JP1 and JP2 in- dicate pulse output configuration. JP1 is in- stalled at the factory. These jumpers are located on the filter board (the base board of the electronic stack). See figure 4-1.
	To configure jumpers, access the filter board, located in the flow transmitter condulet. To access the filter board, see Electronics Re- moval in Section 6: Troubleshooting and Maintenance.
Mounting Electronics	Electronics can be ordered for either integral or remote mounting. With integral mounting, the sensor and electronics are manufactured as one unit. The ambient temperature must be less than 140 °F for integral mounting.
	JP3 Installed for Gas Applications

	With remote mounting, the electronics are manufactured as a unit separate from the flow sensor. Remote electronics can be mounted on either a pipe or a wall. The distance between the sensor and the electron- ics must not exceed 50 feet (17 meters). If remote mounting is specified in an order, EMCO supplies 30 feet of cable and pipe mounting clamps.	
Field Wiring Access	Remove the field wiring condulet cap to access the field wiring terminal block for power and signal wiring. (Figure 4-2)	
Grounding the Meter	To ensure proper electrical noise rejection, connect ground strap (size 8 AWG or larger wire) from the ground screw attached to the outside of the electronics enclosure to a known earth ground (not the pipe). (Figure 4-3)	
VAC Power Supply	The V-Bar may be operated using a 24 volt power supply. For proper power and signal wiring, shielded cable should be at least 18 AWG or larger. Connect shield wire from shielded cable to earth ground at power sup- ply. Insulate other end of shield wire from electrical condulet at the meter. (Figure 4-4)	
VAC Power: Analog Output (JP1 installed or no jumpers)	Scalable 4–20 mA output, 2-wire principle. Load resistor may be installed on supply or return line. $V_s = 18$ to 40 VAC. (Maximum voltage is 30 VAC with pressure transmitter option.) Permissible load resistance values shown are in the graph below. (Figure 4-5)	Fig
VAC Power: Pulse Output Only (JP2 installed)	This option is for pulse output only using a low impedance electromechanical counter. V_{pulse} will vary from 0-1 V to V_s { $R_c/(R_c+6800)$ }. (Figure 4-6)	
VAC Power: Pulse Output Only (No Jumpers)	This is an open collector pulse output using a high impedance electronic counter. V_{pulse} will vary from 0-1 V to $V_s \{R_c/(R_c+R_{pulse})\}$. (Figure 4-7)	
VAC Power: Pressure and Temperature Transmitter Wiring	Remove the field wiring condulet cap to access the field wiring terminal block for power and signal wiring. Flow, pressure, and temperature output wiring connects to the terminal block. Refer to the previous section on 24 VAC power and signal wiring for ap- propriate load resistance and power supply values. Pressure and temperature transmitters	Fig

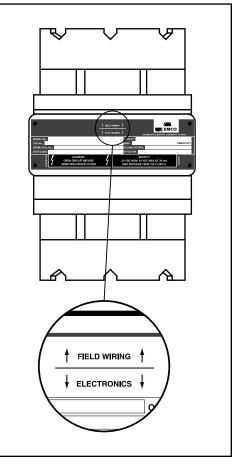


Figure 4-2. Field Wiring Access

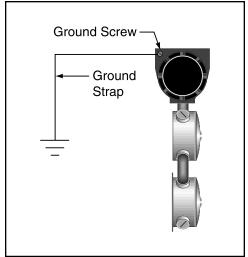


Figure 4-3. Ground Screw Location

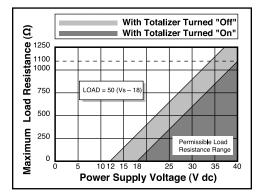
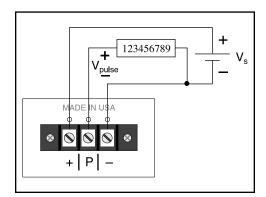
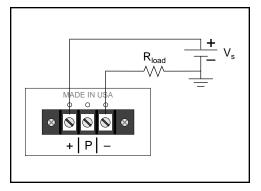
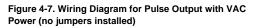
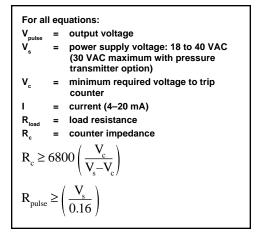


Figure 4-4. Load Resistance Graph for VAC Power with Analog Output


Figure 4-6. Wiring Diagram for Pulse Output with VAC Power (JP2 jumper installed)

 $\begin{array}{c|c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$

Figure 4-5. Wiring Diagram for Analog Output with VAC Power (JP1 jumper or no jumpers installed)

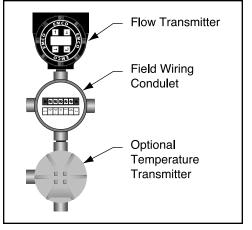
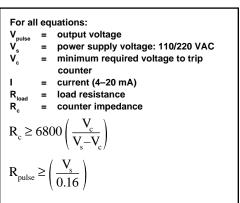


Figure 4-8. Field Wiring Condulet Location

are scaled to the appropriate ranges at the factory. (Figure 4-8)


Note: Maximum voltage with optional pressure transmitter is 30 VAC and 110 VAC power supply is not available with pressure and/or temperature transmitters.

Wiring with analog output See Figure 4-9.

Wiring with pulse output See Figure 4-10.

where:

- $V_s =$ Power supply: 18 to 30 VAC
- R_{p}^{s} = Pressure measuring resistance
- \mathbf{R}_{T}^{p} = Temperature measuring resistance
- $R_{\rm F}$ = Flow rate measuring resistance

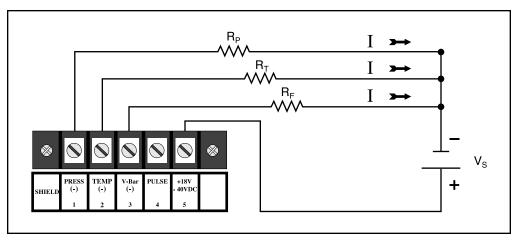


Figure 4-9. Wiring Diagram for Pressure and Temperature Transmitter with Pulse Output and VAC Power

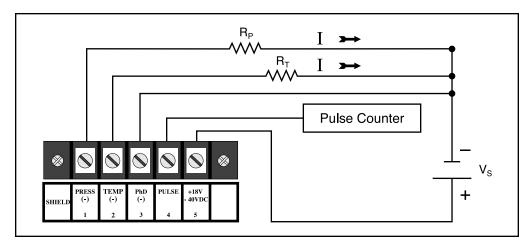


Figure 4-10. Wiring Diagram for Pressure and Temperature Transmitter with Analog Output and VAC Power

VAC Power Supply The V-Bar may be operated using 110 VAC power supply. The power supply converts the 110 VAC to 24 VAC. VAC Power: Analog Output Scalable 4–20 mA output, 2-wire principle. (JP1 installed or no jumpers) Load resistor may be installed on supply or return line. $R_{_{load}}$ must be less than 300 $\Omega.$ VAC Power: Pulse Output This option is for pulse output only. V will vary from 0-1 V to $24\{R_c/(R_c+6800)\}$. **Only** (JP2 installed) **Remote Wiring** Output wiring from remote electronics is identical to output wiring from integral electronics. Wiring from the remote electronics condulet to the electrical junction box must be performed in the field. Connect the remote cable to the terminal block in the junc-

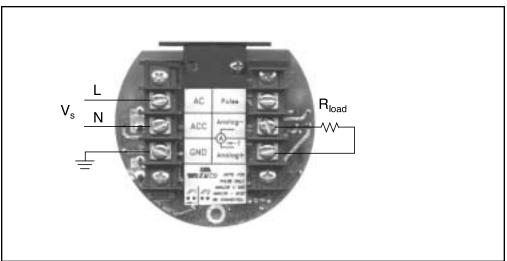


Figure 4-11. Wiring Diagram for Analog Output with VAC Power

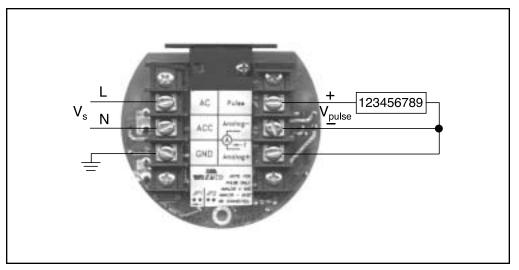


Figure 4-12. Wiring Diagram for Pulse Output with VAC Power (JP2 jumper installed)

tion box as shown. If nonconductive conduit is used, attach a ground strap from the ground screw on the remote electronics condulet. If the remote cable is cut to a shorter length, insulate shield with tape at electrical junction box. (Figure 4-13)

Note: If remote mounting is required with a pressure and/or temperature transmitter, two power supplies are required for operation: one for the remote flow transmitter and one for the pressure and/or temperature transmitter.

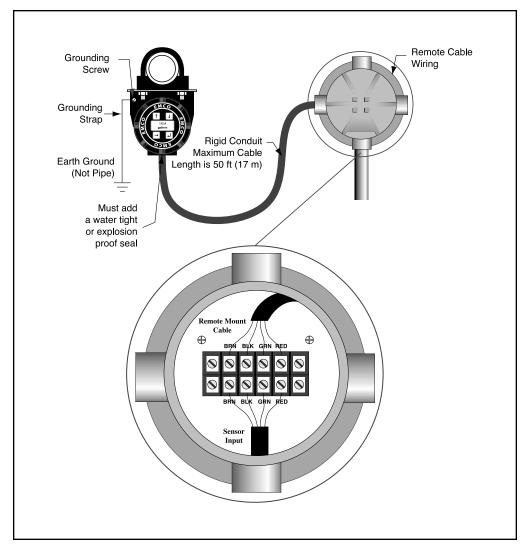


Figure 4-13. Wiring Diagram for Remote Mounted Electronics

Remote Electronics

EMCO

with 4-20 mA Pressure and 4-20 mA Temperature See Figure 4-14.

with 4-20 mA Pressure and RTD See Figure 4-15.

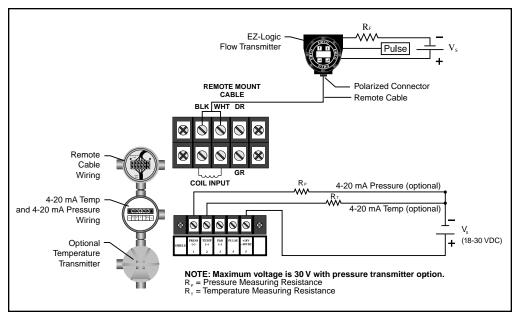


Figure 4-14. Wiring Diagram for Pressure and Temperature Transmitter with Remote Mount Electronics

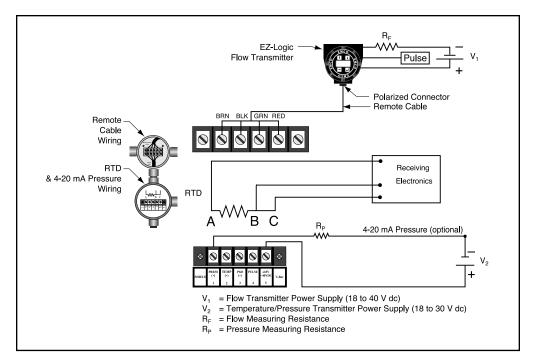


Figure 4-15. Wiring Diagram for Pressure Transmitter and RTD with Remote Mount Electronics

Section 5: EZ-Logic Programming

Introduction to EZ-Logic

Keypad Activation

I EMCO

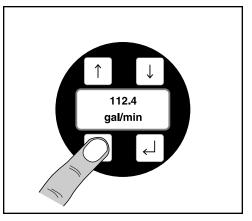
EZ-Logic is a menu driven user interface. It consists of the top display menu and nine programming submenus, which are grouped by functionality. The submenu groups are:

The ConFigure group, which configures the flowmeter for operation in a specific application and includes:

The Basic Menu The Output Menu The Fluid Menu The Sensor Menu

The Diagnose group, which contains information relating to flowmeter maintenance and includes:

The Reset Menu The Service Menu


The Personalize group, which allows the user to customize the flowmeter by choosing display parameters or changing the password and includes:

The Password Menu The HART Menu The Display Menu

Each group has it's own icon, ConFigure "**C**", Diagnose "**D**", and Personalize "**P**", which appears in the upper or lower right hand corner of the display. The user can identify the location within the interface map from the displayed icon.

The keypad can be manipulated by either removing the condulet cap and depressing the membrane keys using your fingers or using the magnet wand to activate the keys through the condulet cap, without sacrificing the explosion proof rating. To activate keys, place magnet wand on the targeted area and remove. (Figures 5-1 and 5-2)

Note: The magnet wand is only supplied as a standard tool with the explosion proof meters.

Figure 5-1. Manual Manipulation of the Keypad. *Remove the condulet cap and depress the membrane keys using your fingers.*

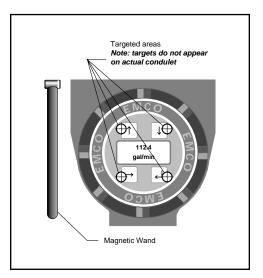


Figure 5-2. Magnetic Manipulation of the Keypad. Activate the keys without removing the condulet cap by placing the magnetic wand on the target areas shown.

/

Caution: Do not place magnet wand near magnetically sensitive items such as: credit cards, card key, etc.

Movement Through the Interface

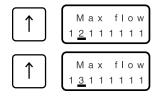
The interface was designed to be simple. For example, to go right across the submenu headings press the right arrow key \supseteq .

To move up or down through each submenu use the down \bigcirc or up \bigcirc arrow keys.

Note: Each submenu is setup as a loop. Once you reach the bottom (using the down arrow key) depressing the same key will move you to the column heading.

The enter key 🕘 is used to exit the programming submenus.

How to Alter Real Number Data


To alter data in a selected block, press the enter key. A cursor will appear under the first digit. The blinking icon will disappear when altering data.

To move the cursor to the desired digit, press the right arrow key .

To increase the value of the digit, press the up arrow key. Possible values for each position are: 0–9, blank space, or a decimal point.

To decrease the value of the digit, press the down arrow key.

29

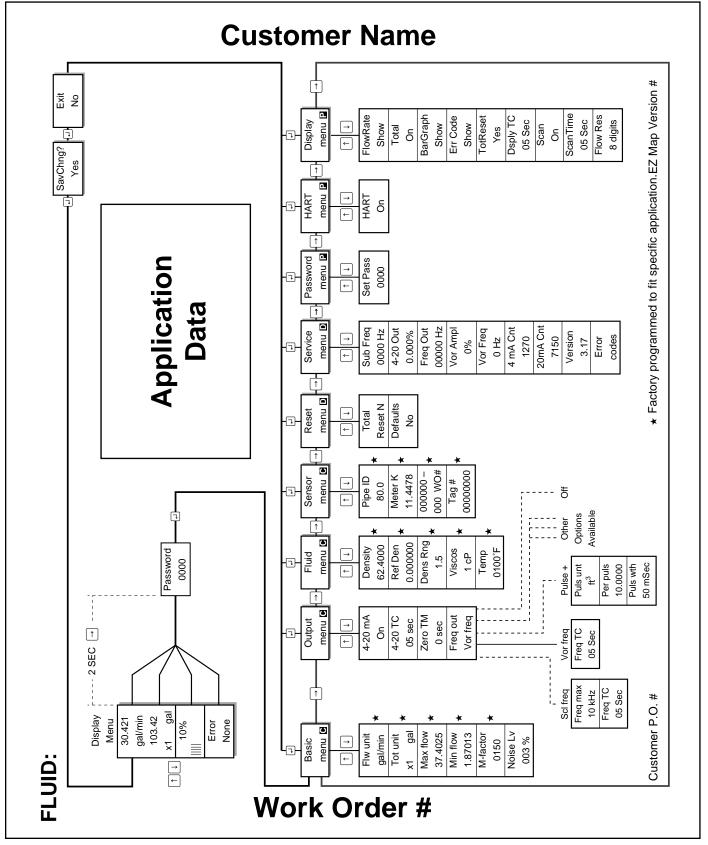


Figure 5-3. EZ-Logic Interface Map

After the desired alterations are made, press the enter key to store the new value. The blinking icon will reappear.

	Max flo C
$[\leftarrow]$	12111111

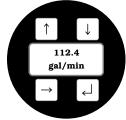
How to Alter Preset Data

To alter data in a selected block, press the enter key. A cursor will appear. The blinking icon will disappear when altering data.

Flw unit
_gal/min

To change the volume unit, press the up key.

$\boxed{\uparrow}$	Flw unit
\Box	_ bbl/min


To change the time unit, press the down key.

		F	I	w	I	J	n	i	t	
	J	ı	b	b	I	/	h	r		

After desired alterations are made, press the enter key to store the new units. The blinking icon will reappear.

Top Display Menu

The top display menu appears when the meter is powered up. The display menu scans through four screens. The screens are:

Flow Rate

Continuously displays the actual flow rate in the units selected in the Flow Unit screen in the Basic Menu.

0.0	
gal/min	

Totalized Flow

Continuously displays totalized flow in the units selected in the Totalizer Unit screen in the Basic Menu.

1965	80
X10	gal

Bar Graph

Displays the percentage of full scale flow and a corresponding bar graph.

Error Code

The electronics monitor and record several possible errors that may occur during operation. Push right arrow key to scroll through errors. See Section 6: Troubleshooting and Maintenance for error codes.

Accessing Programming Submenus

To enter the programming submenus, press the right arrow key for 2 seconds. Enter the correct password. If the correct password is entered, the display will read "Full Access." If an incorrect password is entered, the display will read "Read Only" and the user will not be able to alter the programming. (Figure 5-4)

Note: The flowmeter ships from the factory without a password; "Full Access" will automatically be permitted until a password is entered. See the Set New Password screen in the Password Menu to enter a password.

Note: While accessing the programming submenus, the meter will be "off line." The last values of the totalizer and the flow rate will be stored until the meter is returned to the display menu.

The Basic Menu

Basic ↓ menu C

Flow Unit

Sets the units for the displayed flow rate and for setting the maximum and minimum flow for scaling the 4-20 and frequency/pulse outputs. Press the up arrow key to scroll through the volume units. Possible flow units: gallons, bbl, cm³, liters, m³, lb, tons, grams, kilograms, metric tons, standard ft³, normal m³, ft³, and in³. Press the down arrow key to scroll through time units. Possible time units: minutes, hours, days, and seconds.

Flw unit	
gal/min	

Totalizer Unit

Sets the units for the displayed totalized flow. Select a multiplier to slow the counting of the totalizer. Press the up arrow key to scroll through multipliers. Possible multipliers: x1, x10, x100, x10³. Press the down arrow key to scroll through units. Possible units: gallons, bbl, cm³, liters, m³, lb, tons, grams, kilograms, metric tons, standard ft³, normal m³, ft³, and in³.

-	Tot	unit	
	1X	gal	

Maximum Flow

Maximum flow is entered in the units programmed in the Flow Unit screen. This value sets the 20 mA point for the analog output and the maximum frequency for the scaled frequency output.

Max flow	
37.4025	

Minimum Flow

Minimum flow is entered in the units programmed in the Flow Unit screen. This value sets the cutoff point, below which the analog output drops to 4 mA and/or the scaled frequency output drops to 0 Hz. This value

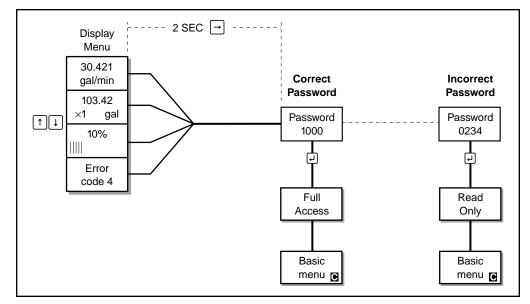


Figure 5-4. Password Access to Submenus

can not be programmed below the published minimum flow rate of the meter.

Min flow 1.87013

M-Factor

M-factor is a value that sets the signal input filter. The nominal M-factor for all V-Bar flowmeters is 150.

Noise Level

Sets the no flow cutoff level. If the input signal level drops below this value, the meter will not output or display a flow rate. The Noise Level can be set from 1-100%. 0% represents no flow, 100% represents 100% of the meter's maximum flow, not the maximum flow for specific application which is programmed in the Basic Menu.

Caution: An automatic Noise Level setting should be performed only at no flow conditions.

To perform an automatic Noise Level setting, select a value of 000. After 5 seconds, the meter will calculate the new value. For best results, auto set the noise level with any pumps on and any downstream valve closed.

Analog Output

Linear analog output set by minimum and maximum flow. Toggle on/off with the up and down arrow keys. (Figure 5-5)

Analog Output Time Constant Dampens the analog output. Possible time constants: from 0 to 99 seconds.

The Output Menu

	Output	
Ļ	Menu	С

/ EMCO

Output Zero Time

Sets the number of seconds before analog output drops to 4 mA and the scaled frequency output drops to 0 Hz after the actual flow drops below the programmed minimum flow.

Frequency/Pulse Output Setup

Selects the type of Frequency/Pulse output. Possible output options: Scaled Frequency, Vortex Frequency, Direct Frequency, Pulse –, Pulse +, and Transition.

Freq out 00000 Hz

To disable the frequency/pulse output, select "off." The remainder of the Output menu will change based on the output option selected. Refer to the EZ-Logic Map.

Note: When connecting the V-Bar to the flow processor, select Vortex Frequency as the output option.

Scaled Frequency Output

The output frequency is a linear output scaled between minimum and maximum flow. (Figure 5-6)

Freq out 00000 Hz

Maximum Output Frequency

Sets the maximum output frequency. Possible settings: 500 Hz, 1kHz, 3 kHz, 5 kHz, or 10 kHz.

Freq max	
10 kHz	

Frequency Output Time Constant

Dampens the frequency output. Possible time constants: from 0 to 99 seconds.

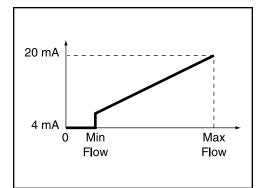


Figure 5-5. Linear Analog Output

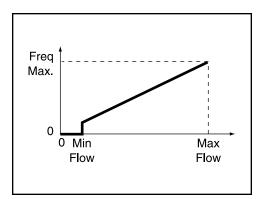


Figure 5-6. Linear Scaled Frequency Output

EMCO

Vortex Frequency Output

The output frequency is equal to average pipe velocity (1 Hz = 1 ft/s). Use this output when connecting to a flow processor. The flow processor's programmed K-factor should be 1/Area (ft²).

Frequency Output Time Constant

Dampens the frequency output. Possible time constants: from 0 to 99 seconds. Default is 5 seconds.

05 sec	F	req TC
		05 sec

Direct Frequency Output

The output frequency is the true shedding frequency at the sensor head. This is an instantaneous representation of the flow. The local velocity may be calculated using the following equation: Velocity(ft/s) = Frequency/K-factor

Pulse –

The output frequency is one negative pulse for each time the totalizer increments. The totalizer increment is set in the Per Pulse and Pulse Unit screens.

Freq out Pulse –

Per pulse

Sets the amount of fluid that passes through the meter per pulse.

Per puls 10,000

Pulse Unit

Possible units: gallons, bbl, cm³, liters, m³, lb, tons, grams, kilograms, metric tons, standard ft³, normal m³, ft³, and in³. Possible multipliers: $\times 1$, $\times 10$, $\times 100$, $\times 10^3$.

Puls unt ft^³

Pulse Width

Possible pulse width settings: 5 msec, 50 msec, 500 msec, 1 sec, 5 sec. Programmed pulse width must be less than actual output signal pulse width at maximum flow rate.

Pulse +

The output frequency is one positive pulse for each time the totalizer increments. The totalizer increment is set in the Per Pulse and Pulse Unit screens.

ſ	Freq out	
	Pulse +	
_		

Per pulse

Sets the amount of fluid that passes through the meter per pulse.

Pulse Unit

Possible units: gallons, bbl, cm³, liters, m³, lb, tons, grams, kilograms, metric tons, standard ft³, normal m³, ft³, and in³. Possible multipliers: $\times 1$, $\times 10$, $\times 100$, $\times 10^3$.

Puls unt ft^³

Pulse Width

Possible pulse width settings: 5 msec, 50 msec, 500 msec, 1 sec, 5 sec. Programmed pulse width must be less than actual output signal pulse width at maximum flow rate.

Puls wth 50 mSec

Transition

The output frequency is one transition from low state to high state for each time totalizer increments. The increment is set in the Per Pulse and Pulse Unit screens.

Freq out Transit

Per Pulse

Sets the amount of fluid that passes through the meter per pulse.

Pulse Unit

Possible units: gallons, bbl, cm³, liters, m³, lb, tons, grams, kilograms, metric tons, standard ft³, normal m³, ft³, and in³. Possible multipliers: $\times 1$, $\times 10$, $\times 100$, $\times 10^3$.

Puls wth
50 mSec

The Fluid Menu

This value represents the actual fluid density of the application in lbm/ft³.

Fluid Density

Reference Density

This value represents the density of fluid at standard conditions in lbm/ft³. Reference Density is used for displaying and scaling standard or normal flow rates. If the reference density is set to zero, the reference density will be the fluid density.

Density Range

This value represents the maximum density divided by the minimum density. Density Range is used to set the input filter. (M-factor)

Fluid Viscosity

This value represents the fluid viscosity used to calculate Reynolds number.

Fluid Temperature

The fluid temperature is used to compensate for changes in internal diameter of the sensor, by shifting the K-Factor.

Size

The Sensor Menu

Pipe inside diameter, 3 to 80 in. (80 to 2000 mm).

Calibration Factor

This value represents the calibrated meter K-factor in pulses/ft.

Meter K	
2400.00	

Serial

Meter body serial number. (Cannot be changed)

000000	
000 WO#	

Tag Number

Meter tag number. (Cannot be changed)

Totalizer Reset

The Reset Menu

Reset the totalizer by selecting Y (yes).

Total	
Reset N	

Set Defaults

Reset the meter to the original programmed defaults shown below by selecting "Yes." Selecting "Yes" will erase existing meter programming. (Figure 5-7)

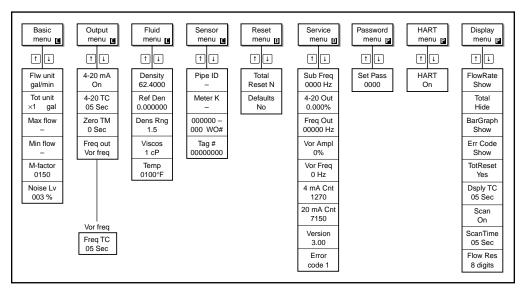


Figure 5-7. Programmed Defaults

The Service Menu

Substitute Frequency

Substitute frequency simulates the vortex shedding frequency for the display and the output. The substitute frequency value must be set to zero before meter returns to actual frequency input.

Simulated Analog Output

Simulation of the analog output 0% = 4 mA and 100% = 20 mA. Can be set at any value between 0 and 100%. Operates only while in this display.

4-20 Out	
0.000%	

Simulated Frequency Output

Simulation of the frequency output, 0–10,000 Hz. Only possible if frequency/ pulse output setup is either the scaled or the vortex frequency options. Operates only while in this display.

Input Signal Amplitude

Input signal level 0–100% of meter's maximum, not maximum flow of specific application which is programmed in the Basic Menu.

Vortex Frequency

The raw input frequency from the sensor.

0 Hz	Vor Freq	
	0 Hz	

4 mA Calibration Value

Sets the number of units the microprocessor sends to the current output circuit to generate 4 mA.

20 mA Calibration Value

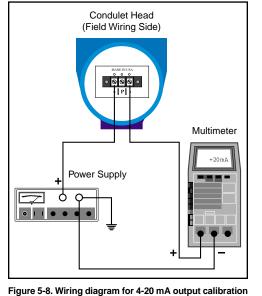
Sets the number of units the microprocessor sends to the current output circuit to generate 20 mA.

ſ	20mA Cnt	
L	7150	
		-

To set the 4 mA and 20 mA Calibration Values, access the 4 mA Calibration Value screen. Adjust the microprocessor count until the multimeter value deviates from 4 mA by no more than ± 0.012 mA. Press enter. Repeat in the 20 mA Calibration Value screen. (Figure 5-8)

Software Revision

The revision of the software used.


Version	
2.10	

Self Diagnostics

Displays current errors. When error condition no longer exists, error code is cleared. Push right arrow key to scroll through arrows. See Section 6: Troubleshooting and Maintenance for error code descriptions.

Error code 1

The Password Menu

F		
↓	Menu	Ρ

Set New Password

Programs the password for future protection of the meter. If 0000 is selected, no password is required for "Full Access."

The HART Menu

\square	HART	
Ļ	Menu	P

The Display Menu

D	isplay	
ļ	Menu	P

HART Enable/Disable

Turns the meter's HART communication abilities on or off.

Show or Hide the flow rate in the top display menu.

Turns on or off the totalizer in the top display menu. Turning off the totalizer allows for 12 VAC operation.

Show or Hide the bar graph in the top display menu.

Show or Hide the error codes in the top display menu.

Err Code	
Show	

If yes is selected, push the enter key once to reset the totalizer, when the totalizer is displayed in the top display menu.

Dampens the displayed flow rate.

Dsply TC	
05 Sec	

Turns the automatic scrolling of the display menu off or on.

5	Scan	
	On	

The amount of time that each display is shown is the display mode if scan is turned on.

Selects the number of significant digits displayed for the flow rate.

Flow Res	
8 digits	

Exiting Programming Submenus

Press the enter key at the top screen of each submenu to exit the programming submenus. The display reads "Exit." Press the up or down arrow key to toggle to "Yes." Press enter. The display reads "SavChng?" (Save Changes?). Press enter to save changes or press the up or down arrow keys to toggle to "No" and press enter to exit without saving changes.

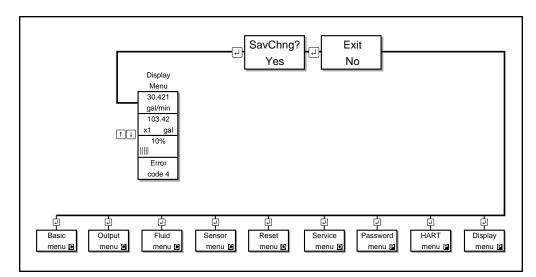


Figure 5-9. Exiting the Programming Submenus

Section 6: Troubleshooting and Service

Electronics Removal

EMCO

The electronics used in the V-Bar are CMOS and susceptible to electrostatic discharge. A wrist strap, used to ground the technician during service work, is recommended.

Turn the power supply off. Remove condulet cap. Unscrew the three display board screws. Gently remove the display board from the electronics stack. Unscrew the hex standoff bolts to remove electronics stack from filter board. Carefully pull the electronics board set from the condulet and set electronics aside in an antistatic bag. Remove sensor female connector from the filter board male connector. Loosen the three filter board screws. Remove filter board from condulet taking care not to bend the three feed through pins. Reassemble the electronics by following the described above in reverse order. (Figures 6-1, 6-2, and 6-3)

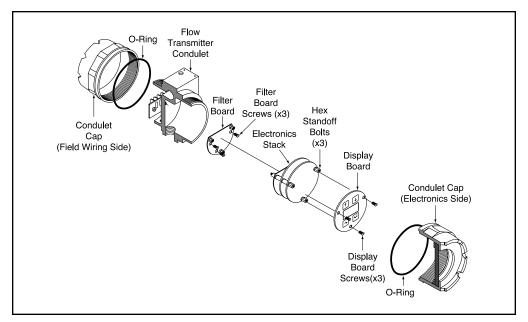


Figure 6-1. Electronics Exploded Assembly

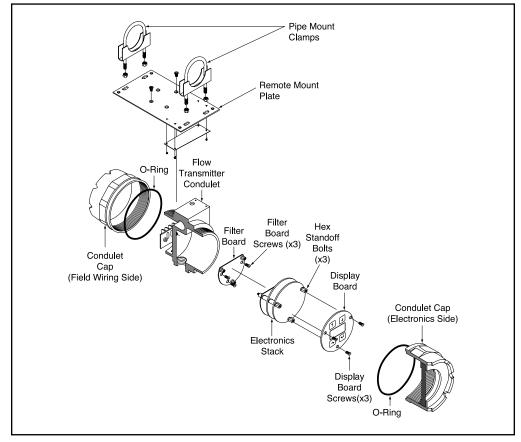
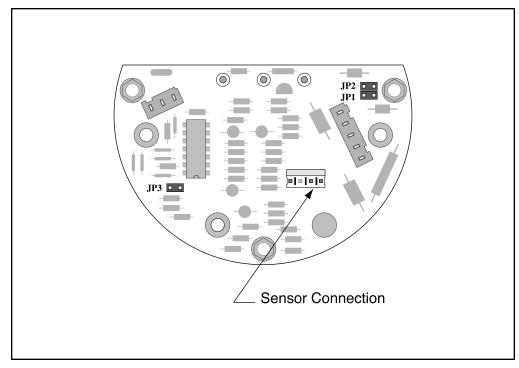



Figure 6-2. Remote Electronics Assembly

Symptom	Output Signals	Error Code	Possible Reason	Solution
Blank display	0-4 mA		Supply voltage	Check suppy voltage on the terminal board of the meter
	or 0 Hz			Check resistance of the current loop. Refer to the analog output section for permissible values.
			Defective electronics	Replace electronics stack in the meter.
Displays flow without output signal	<4 mA		Current output deselected	Turn 4-20 mA to "On" in Output Menu
	O Hz		Frequency output deselected	Turn frequency/pulse to "On" in Output Menu
No flow displayed or no output at flow	4 mA or 0 Hz	1	Minimum flow setting too high	Reduce minimum flow in Basic Menu.
		2	No signal from sensor	Check resistance across sensor wires. Check remote cable connections.
			Flow too low to measure	Check meter for correct sizing.
Shows flow without flow in pipe.	Undefined		Pipe vibration	Auto set noise level in Basic Menu.
				Increase minimum flow until output goes to 4 mA or 0 Hz.
				Support pipe to reduce vibration
			Electrical noise	Check meter and power supply for proper grounding.
Unstable flow signal	Unstable		Pipe vibration and/or flow pulsations disturbing	Support pipe to reduce vibration
			flow measurement	Auto set M-factor in Basic Menu.
			Air bubbles in the media	Follow piping guidelines.
			Pulsating flow	Increase the time constant for outputs and display.
Measuring error	>20 mA	3	Flow exceeds 110% of maximum flow	Verify that the sensor is correctly sized and increase maximum flow in Basic Menu.
	>10 kHz max	4	Flow exceeds 110% of maximum flow	Verify that the sensor is correctly sized and increase maximum flow in Basic Menu.
	o Hz	5	Volume/pulse too low or pulse width too long	Check volume/pulse and pulse width in Output Menu for the flow measured.
			Wrong calibration constant	Check that the K-factor in the Sensor menu corresponds to the value on the nameplate of the meter.
			The sensor is not correctly positioned	Check calculation of insertion depth. Verify the sensor is inserted to correct depth. Verify that sensor is aligned correctly.
	4 mA offset at no flow		4 mA calibration value incorrect	Calibrate 4 mA point in Service Menu.
	20 mA offset at max. flow		20 mA calibration value incorrect	Calibration 20 mA point in Service Menu.

Table 6-1. Troubleshooting Chart

Sensor Functionality Test

V-Bar-600/60S:

V-Bar-600/60S:

Sensor Removal

Flowmeter Removal

A functionality test should be performed at the electronics condulet regardless of mounting configuration (integral or remote). Use proper ESD precautions at all times. Disconnect the power. Remove the electronics stack from the condulet and place into an antistatic bag. Verify the sensor is properly connected to the filter board. Disconnect the sensor from the filter board. Insert solid wire (approximately. 1/32" diameter) into the sensor female connector to serve as leads. Check the resistance between the red wire and the green (or white) wire. The resistance should be between 500 and 2500 Ω . Check the resistance between the green (or white) and the black wire. The resistance should be between 500 and 2500 Ω . The two previous resistance measurements should be within 30 Ω of each other. Check the resistance between all four wires and earth ground (the condulet or meter body). The resistance should be 20 m Ω or greater. (Figure 6-4)

It is not necessary to depressurize the system to remove the V-Bar-600/60S flowmeter, because the V-Bar-600/60S is mounted with an isolation valve.

Step 1. Disconnect the power to the meter.

Step 2. Loosen the orientation set screw. (Figure 6-5)

Step 3. Retract the stem fully into the threaded pipe nipple by turning the retractor handle counterclockwise. Close the 2" isolation valve. Remove the plug in the $\frac{1}{4}$ " bleed valve. Slowly open the $\frac{1}{4}$ " bleed valve to release entrained fluid pressure. (Figure 6-6)

Step 4. Remove the meter from the isolation valve by unscrewing the meter out of the isolation valve. Reinstall the flowmeter as described in Section 3: Mechanical Installation.

Step 1. Remove the meter from the pipe as described in Flowmeter Removal.

Step 2. Disconnect sensor filter board connection as described in Electronics Removal.

Step 3. Loosen the junction set screw (Figure 6-5). For the temperature or pressure transmitter options remove the two

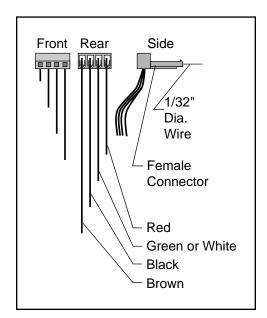


Figure 6-4. Wire Identification for Sensor.

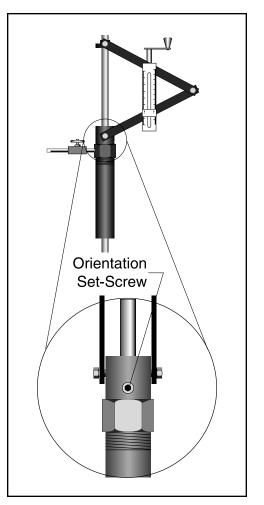


Figure 6-5. Orientation Set-Screw Location. To unlock the stem into position, loosen the orientation set-screw.

EMCO

terminal block set screws from the terminal wiring block in the field wiring condulet (Figures 6-8 and 6-9). Pull the terminal block out far enough to clear a path for the sensor connector.

Step 4. Unscrew the stem (Figure 6-10) from the junction mount and remove the stem by pulling it out from the bottom of the meter. Replace sensor by following the steps above in reverse order.

Note: When reassembling the stem, make sure that the flow direction arrow and Vortex sensor head input (flared side) are in opposite directions.

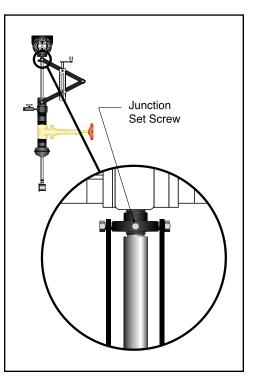


Figure 6-7. Junction Set-Screw Location

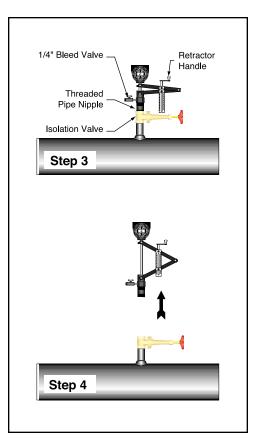


Figure 6-6. Removing the V-Bar-600/60S

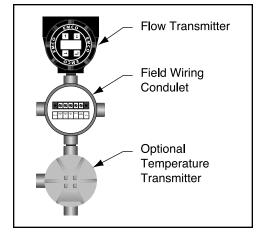


Figure 6-8. Field Wiring Condulet Location

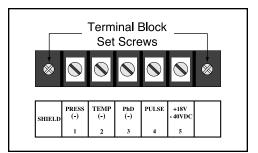
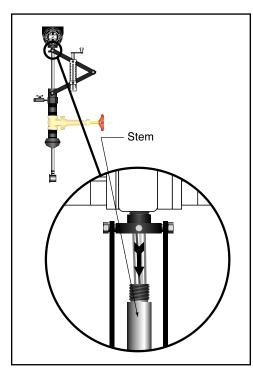



Figure 6-9. Terminal Block Set Screw Location

Figure 6-10. Removing the V-Bar-600 Sensor. Unscrew the stem from the junction mount and remove the stem by pulling it out from the bottom of the meter.

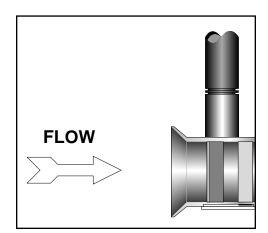


Figure 6-11. Vortex Sensor Head Input. When reassembling the stem, verify that the flow direction arrow and vortex sensor head input are in opposite directions.

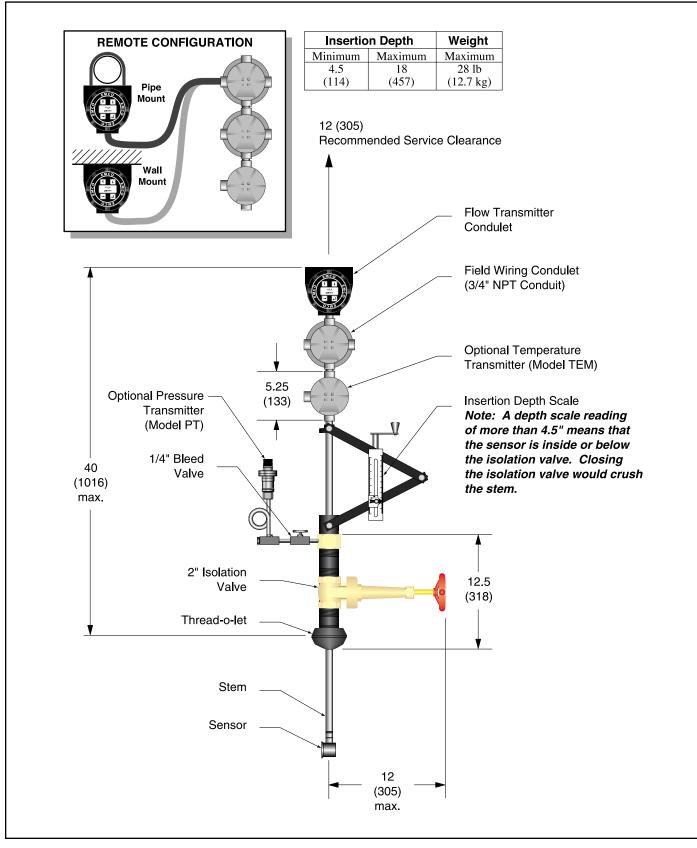


Figure 6-12. V-Bar-600/60S Dimensional Outline. All dimensions are in inches (millimeters).

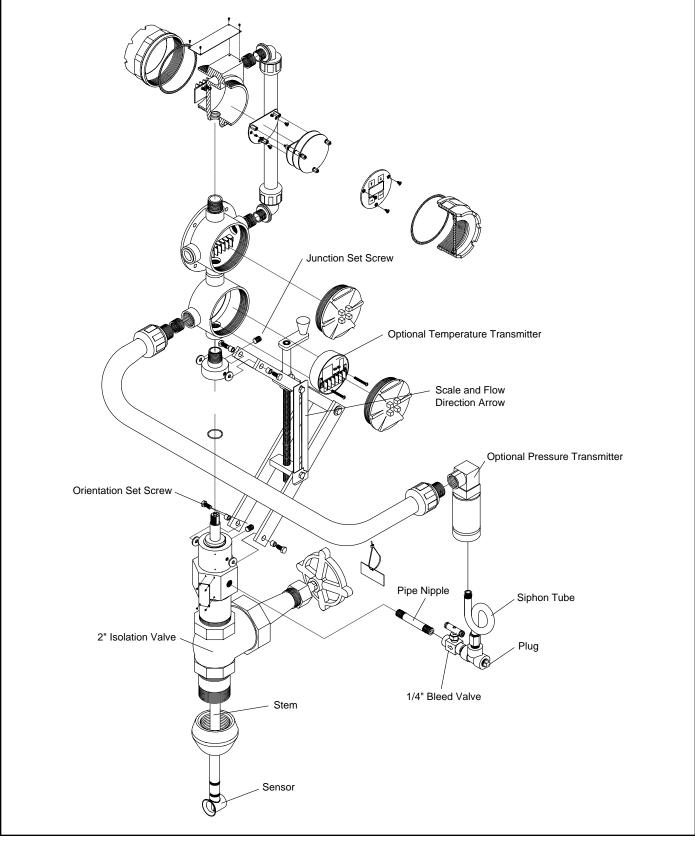


Figure 6-13. V-Bar-600/60S Integral Assembly

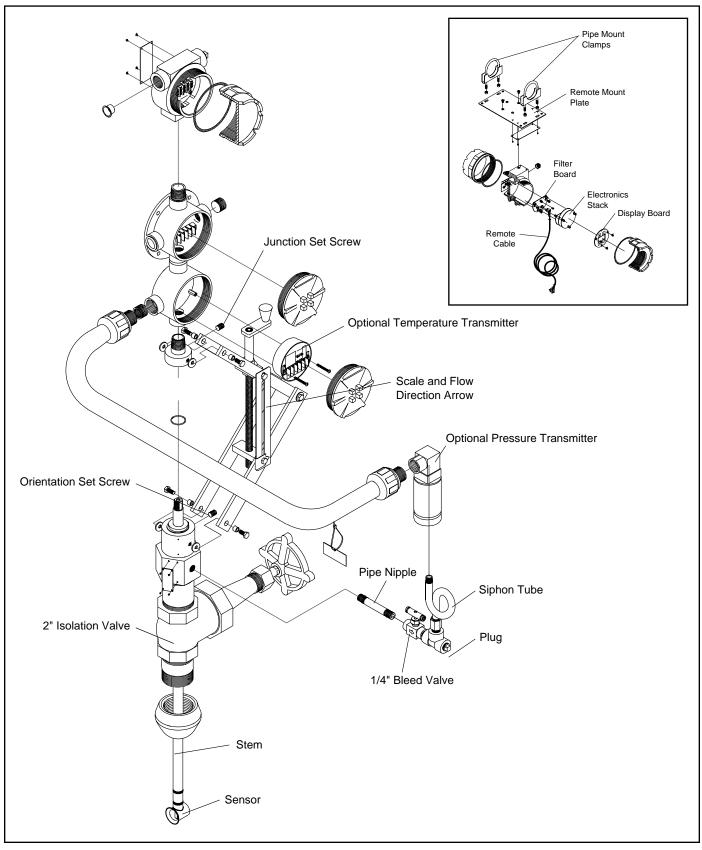


Figure 6-14. V-Bar-600/60S Remote Assembly

V-Bar-700: Flowmeter Removal

(Figure 6-15)

Warning: Do not loosen the Swagelok fitting under pressure. Doing so may result in serious injury.

Step 1. Disconnect the power to the meter. Depressurize the system. Loosen the Swagelok fitting.

Step 2. Manually pull up on the orientation levers to retract the stem so that the retaining ring contacts the base of the stem housing. Lightly tighten the Swagelok fitting to hold stem in place.

Step 3. Carefully detach the meter from the thread-o-let or flanged mounting. Reinstall the flowmeter as described in Section 3: Mechanical Installation.

To remove the sensor V-Bar-700, contact EMCO or your EMCO sales representative.

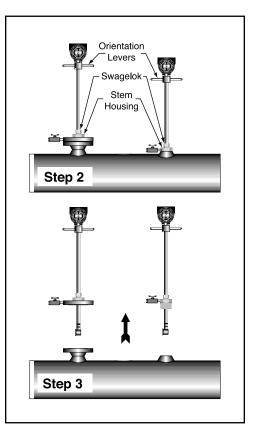


Figure 6-15. Removing the V-Bar-700

V-Bar-700: Sensor Removal

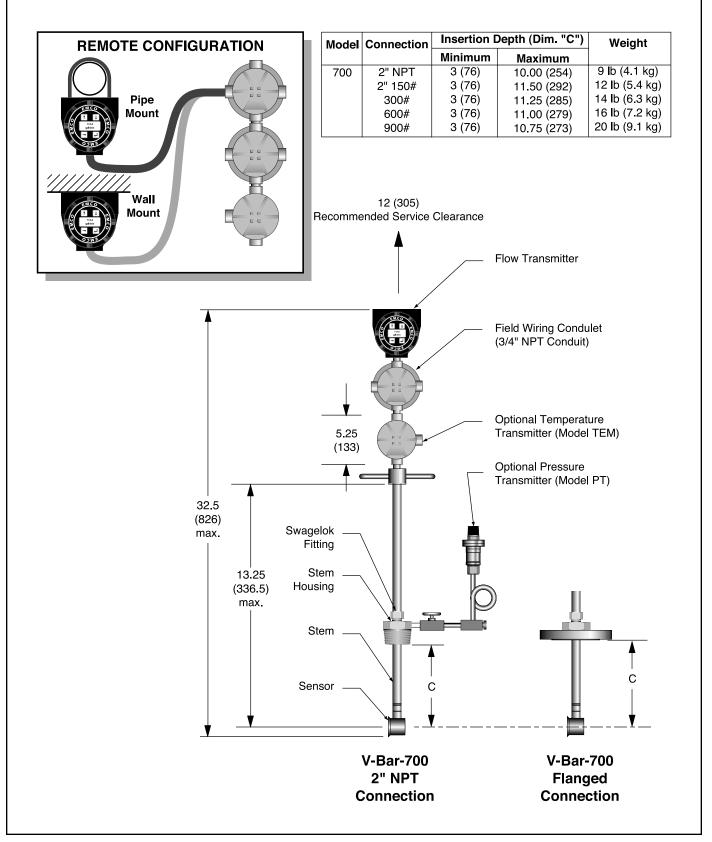
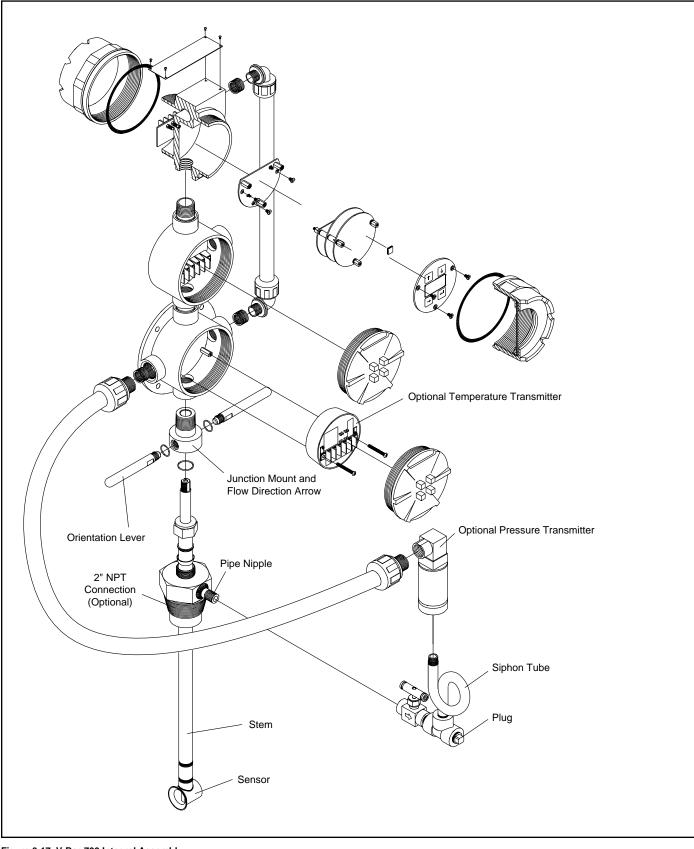



Figure 6-16. V-Bar-700 Dimensional Outline. All dimensions are in inches (millimeters).

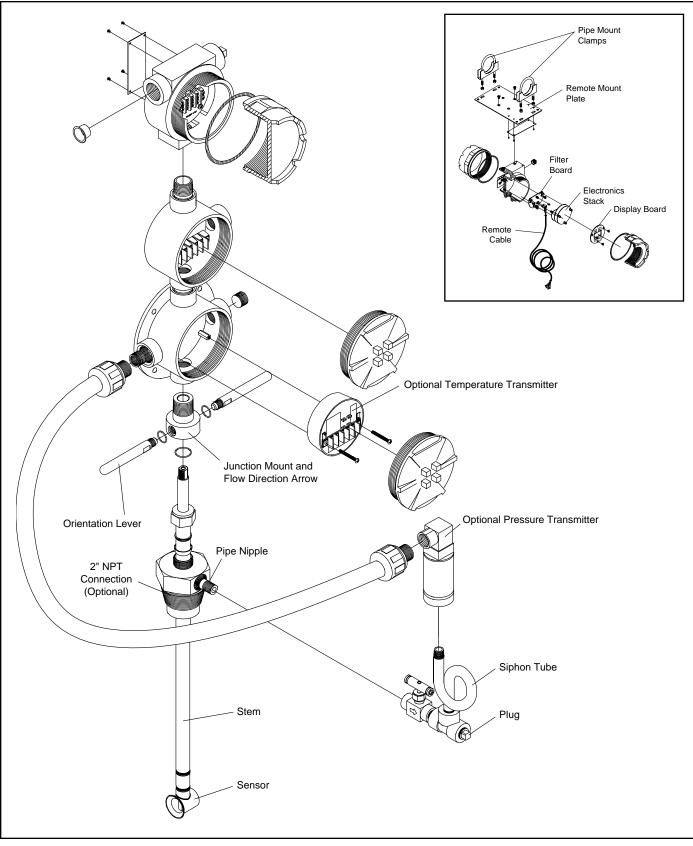


Figure 6-18. V-Bar-700 Remote Assembly

V-Bar-800/80S: Flowmeter Removal

(Figure 6-19)

Warning: For a V-Bar-800/80S with a 2" NPT connection or a flanged connection installed without an isolation valve, the system needs to be depressurized.

Step 1. Disconnect the power to the meter.

Step 2. Loosen the horizontal cap screw on the bottom clamp. Do not loosen the cap screw on the top clamp. The top clamp is used as a marker so the insertion depth does not have to be recalculated every time the meter is removed or reinstalled.

Step 3a. Manually pull up on the orientation levers until the stem retracts completely.

Step 3b. If the meter is installed with an isolation valve, close the isolation valve; remove the plug in the $\frac{1}{4}$ " bleed valve and slowly open the bleed valve to release entrained fluid pressure.

Step 4. Detach the meter from the mounting connection. Reinstall the flowmeter as described in the installation process.

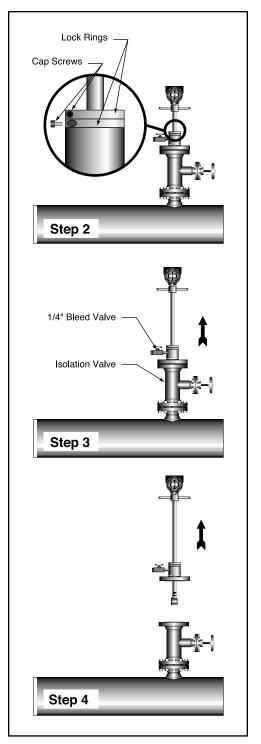


Figure 6-19. Removing the V-Bar-800/80S

V-Bar-800/80S: Sensor Removal

EMCO

Step 1. Remove the meter from the pipe as described in Flowmeter Removal.

Step 2. Disconnect sensor filter board connection as described in Electronics Removal.

Step 3. Loosen the orientation levers. For the temperature or pressure transmitter options remove the two terminal block set screws from the terminal wiring block in the field wiring condulet. Pull the terminal block out far enough to clear a path for the sensor connector. (Figure 6-20)

Step 4. Unscrew the stem from the junction mount and remove the stem by pulling it out from the bottom of the meter. Replace sensor by following steps above in reverse order.

Note: When reassembling the stem, make sure that the flow direction arrow and Vortex sensor head input (flared side) are in opposite directions.

Flow Transmitter Field Wiring Condulet Optional Temperature Transmitter

Figure 6-21. Field Wiring Condulet Location

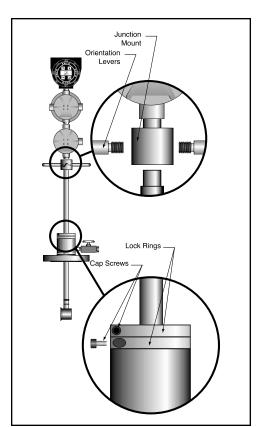


Figure 6-20. Removing the V-Bar-800 Sensor. Unscrew the stem from the junction mount and remove the stem by pulling it out from the bottom of the meter.

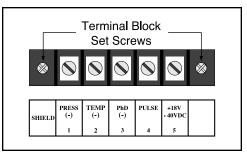


Figure 6-22. Terminal Block Set Screw Location

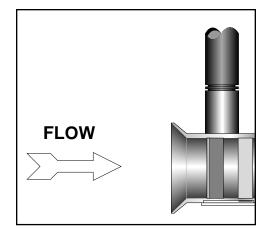
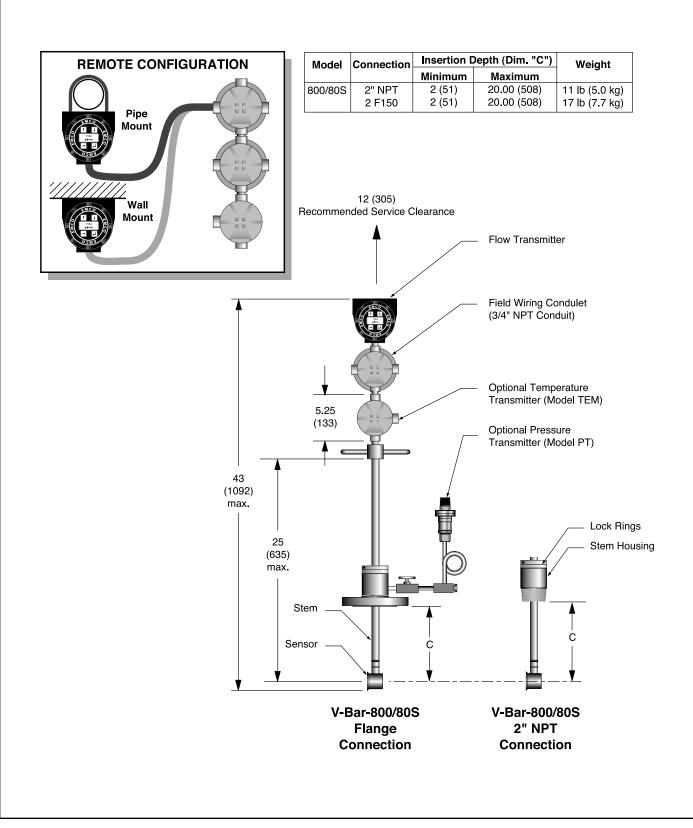



Figure 6-23. Vortex Sensor Head Input. When reassembling the stem, verify that the flow direction arrow and vortex sensor head input are in opposite directions.

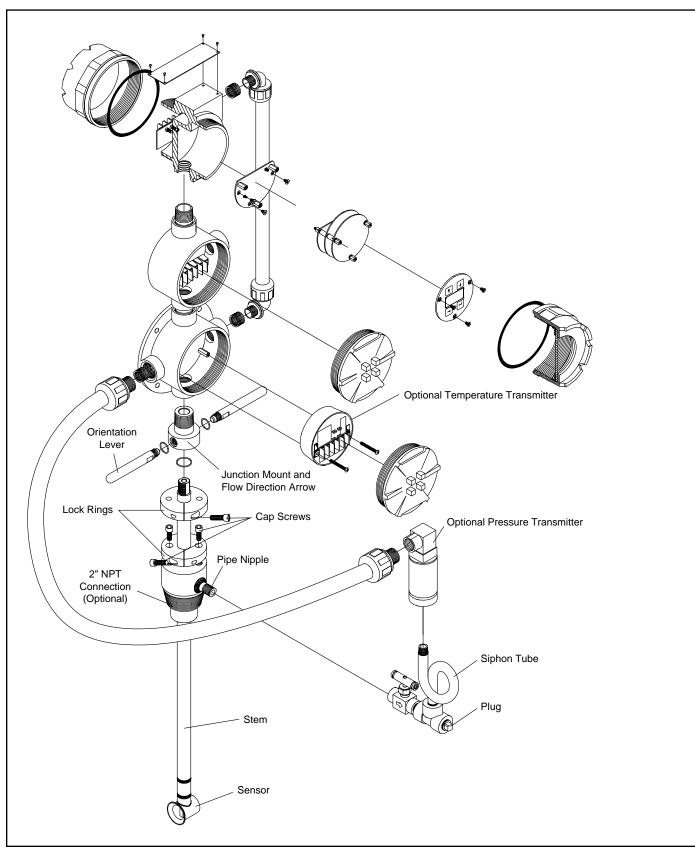
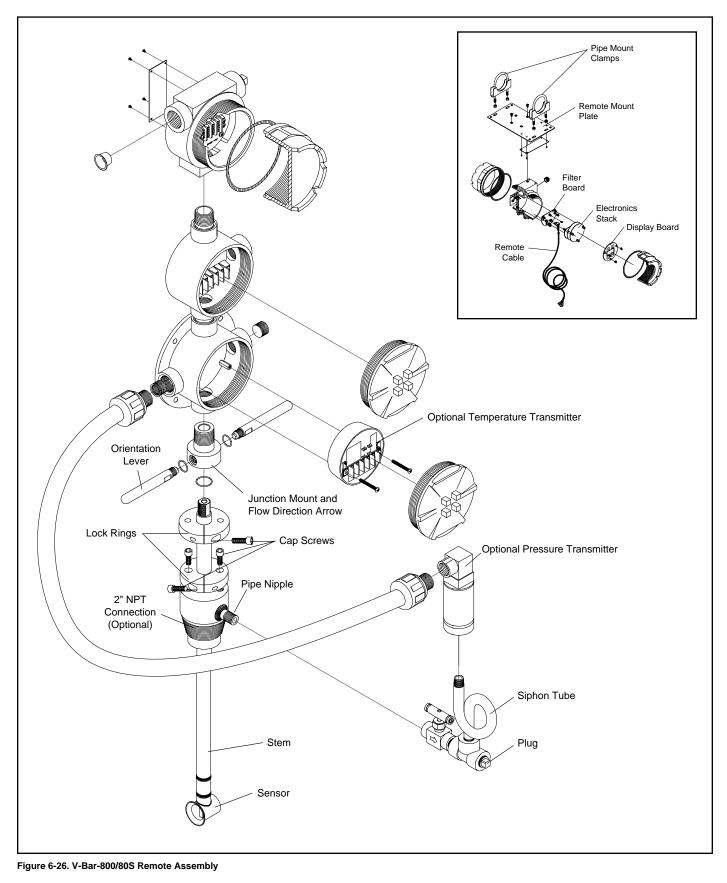



Figure 6-25. V-Bar-800/80S Integral Assembly

V-Bar-910/960: Flowmeter Removal

EMCO

(Figure 6-27)

Warning: For a meter without an isolation valve, the system needs to be depressurized.

Step 1. Disconnect the power to the meter.

Step 2. Loosen packing gland nuts.

Step 3a. Turn the handwheel counterclockwise to retract the stem out of the pipe (and above the isolation valve assembly, if installed with an isolation valve).

Step 3b. If the meter was installed with an isolation valve, close the isolation valve. Slowly open the ¹/₄" bleed valve to remove entrained fluid pressure.

Step 4. Detach the meter from the mounting connection. Reinstall the flowmeter as described in Section 3: Mechanical Installation.

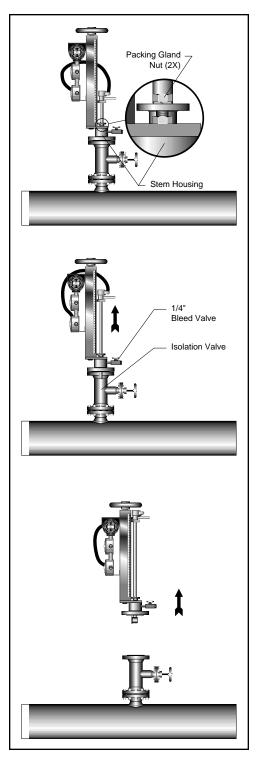


Figure 6-27. Removing the V-Bar-910/960

V-Bar-910/960: Sensor Removal

Step 1. Remove the meter from the pipe as described in Flowmeter Removal.

Step 2. Disconnect sensor filter board connection as described in Electronics Removal.

Step 3. Remove the orientation lever and the orientation set screw. For the temperature or pressure transmitter options remove the two terminal block set screws from the terminal wiring block in the field wiring condulet. Pull the terminal block out far enough to clear a path for the sensor connector. (Figure 6-28)

Step 4. Unscrew the stem from the junction mount and remove it by pulling it out from the bottom of the meter. Replace sensor by following the steps above in reverse order.

Note: When reassembling the stem, make sure that the flow direction arrow and Vortex sensor head input (flared side) are in opposite directions.

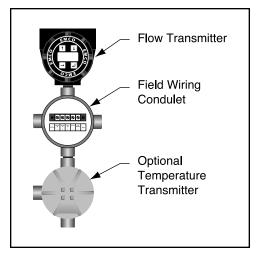


Figure 6-29. Field Wiring Condulet Location

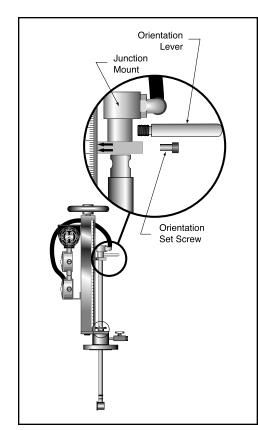


Figure 6-28. Removing the V-Bar-900 Sensor. Unscrew the stem from the junction mount and remove the stem by pulling it out from the bottom of the meter.

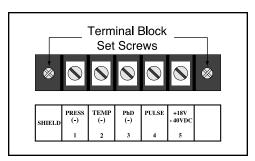


Figure 6-30. Terminal Block Set Screw Location

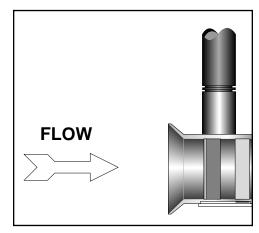
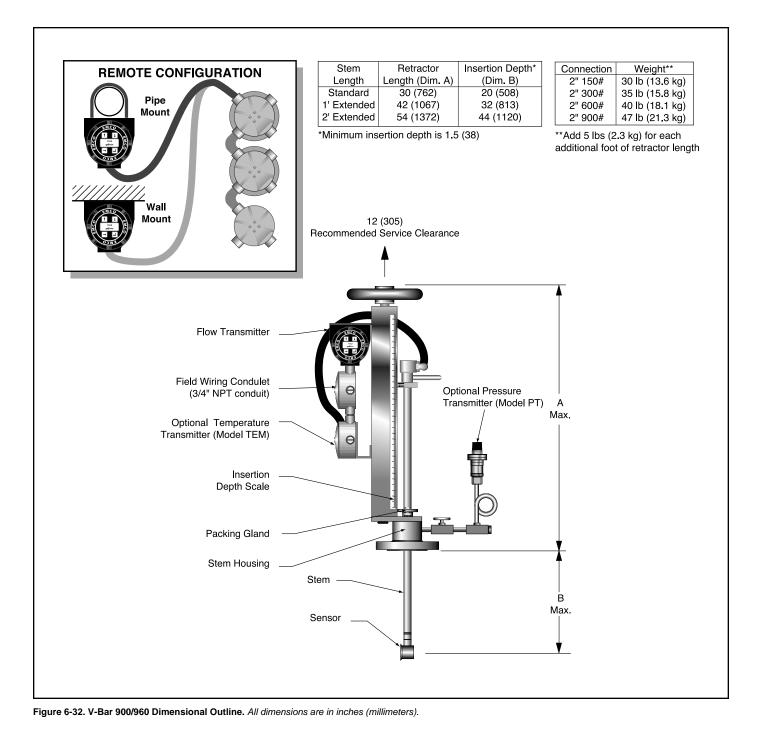



Figure 6-31. Vortex Sensor Head Input. When reassembling the stem, verify that the flow direction arrow and vortex sensor head input are in opposite directions.

EMCO

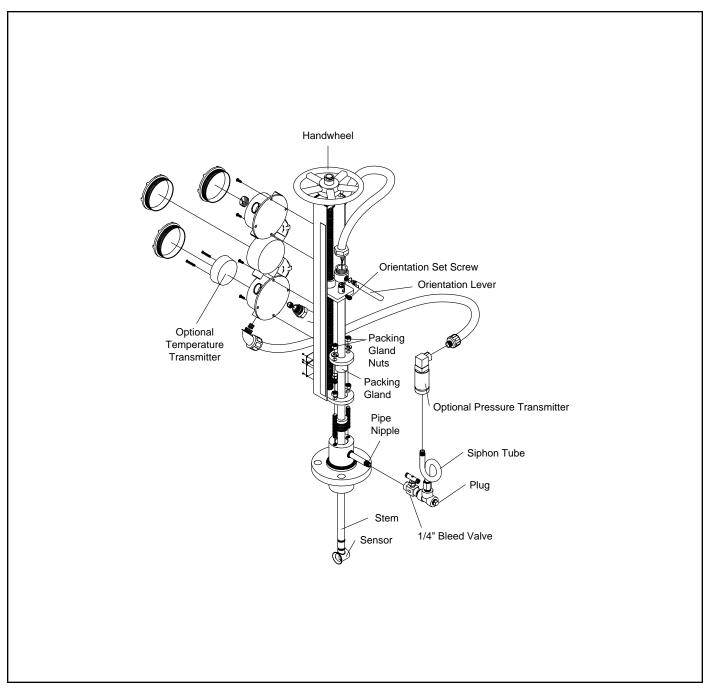


Figure 6-33. V-Bar-910/960 Integral Assembly

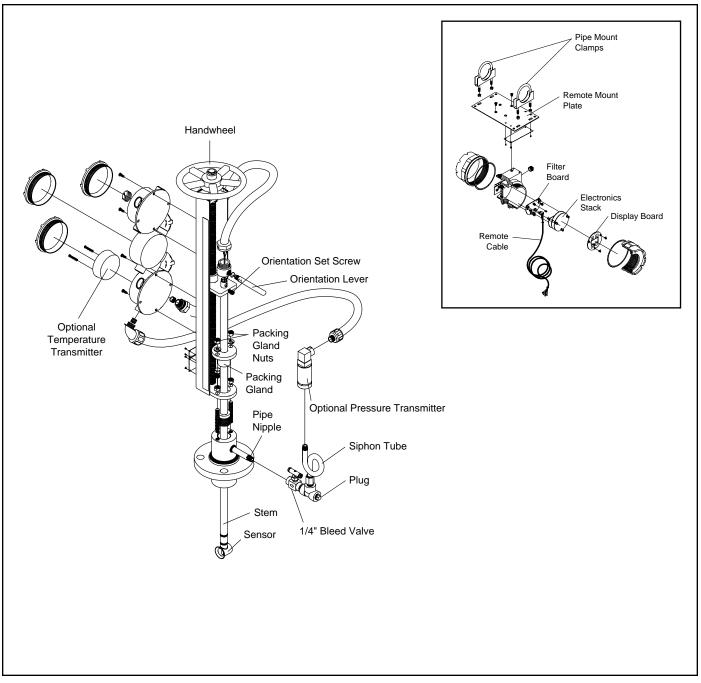


Figure 6-34. V-Bar-910/960 Remote Assembly

TEM Wiring

TEM: Zero and Span

Adjustments

The temperature transmitter is factory prewired to the field wiring terminal block of the V-Bar. No wiring to the TEM itself is required. There are four terminals on the TEM terminal strip:

- 1&5 Terminals 1 and 5 are the RTD terminals. The leads from the RTD are connected to these terminals.
- 3 Terminal 3 is the supply voltage terminal. This terminal is connected to terminal 5 of the junction box terminal block.
- 4 Terminal 4 is the return 4-20 mA signal. This terminal is connected to terminal 2 of the junction box terminal block.

Using a 24 VAC power supply, precision R-box, and digital multimeter, make the connections to the TEM as shown in Figure 6-36. Refer to the TEM calibration data supplied with the instrument. (A copy is also inside the condulet). The table below is an example of this data sheet.

Calibration Data

4.00 mA: 32 °F = 1000.00W 8.00 mA: 41 °F = 1019.03W 12.0 mA: 50 °F = 1038.04W 16.0 mA: 59 °F = 1057.02W 20.0 mA: 68 °F = 1075.96W

Step 1. Set the R-box to zero scale (4 mA), according to the resistance value in the calibration data.

Step 2. Turn the zero adjustment potentiometer until the output reads 4 ± 0.016 mA.

Step 3. Set the R-box to full-scale (20 mA), according to the resistance value on the calibration data.

Step 4. Turn the span adjustment potentiometer until the output reads $20 \pm .016$ mA.

Step 5. Because the span adjustment affects the zero point, repeat the steps above until the zero and span readings are within \pm 0.016 of zero and full- scale.

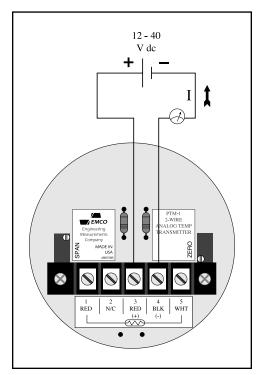


Figure 6-35. TEM Internal Wiring

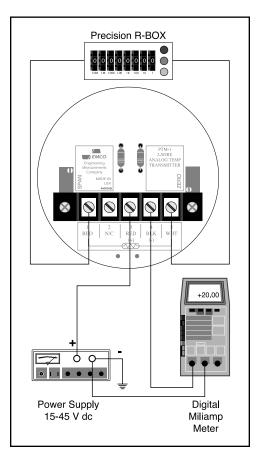
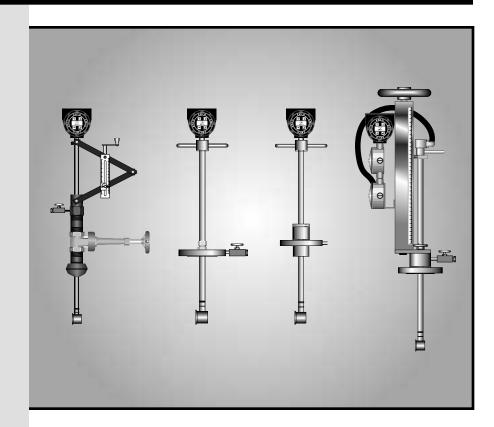


Figure 6-36. Zero and Span Adjustments for TEM


insertion VORTEX flowmeter

Model V-Bar General Specification

V-Bar-600/60S V-Bar-700 V-Bar-800/80S V-Bar-910/960

Features

- Fluid types: liquid, gas or steam
- Pipe sizes: 3 to 80 in. (80 to 2000 mm)
- Negligible head loss
- Rugged construction
- Reliability: no moving parts
- Process pressure up to 2000 psig (138 barg)
- Process temperatures up to 500 °F (260 °C)
- Industry standard frequency and/or 4–20 mA output signals
- Optional integral pressure and/or temperature measurement
- Compatible with HART[®] protocol
- ► EZ-Logic[™] menu-driven user interface (microprocessorbased)
- Local programming via EZ-Logic keypad or magnet wand through explosionproof enclosure

EMCO's model V-Bar[™] Insertion Vortex Flowmeters measure flow rates for a wide variety of fluids and pipe sizes. Unlike an inline flowmeter, which replaces a section of pipe, an insertion meter is "tapped" into the flow line and can be mounted virtually anywhere.

EMCO's V-Bar insertion flowmeters have three main components: the retractor, the sensor, and the electronics. The retractor serves to position the sensor within the pipe. The sensor detects the pattern of vortices as a frequency signal. The "Smart," microprocessor-based EZ-Logic electronics conditions the signal and provides a frequency output, a scaled pulse output, or a 4–20 mA dc signal proportional to the average pipe flow rate.

Most V-Bar flowmeters can be installed on an isolation valve, which permits installation and removal without process shutdown. Integral pressure and/or temperature measurement may be combined with the V-Bar to provide mass flow measurement from a single pipe tap. In addition, a flow processor may be used to increase the accuracy and functionality of the metering system.

Engineering Measurements Company 303.651.0550 • 303.678.7152 Fax sales@emcoflow.com

Performance Specifications

Accuracy (linear ranges)

Liquid.....±1.0% of flow rate Test conditions: Water at 60 °F (15 °C), 50 psig (3.4 barg) with a flow rectifier and 10 pipe diameters upstream.

Gas and Steam±1.5% of flow rate Test conditions: Air at 68 °F (20 °C), 2 psia (2 bara) with a flow rectifier and 10 pipe diameters upstream.

Analog Output.....add ±0.1% of full scale

Operating Specifications

Applied Pipeline Sizes

3 to 80 in. (80 to 2000 mm)

For larger pipe sizes, a one or two foot stem extension may be required.

Fluid Types

V-Bar-600	Liquid or gas
V-Bar-60S	Steam
V-Bar-700	Liquid, gas, or steam
V-Bar-800	Liquid or gas
V-Bar-80S	
V-Bar-910/960	Liquid, gas, or steam

Linear Range

Reynolds number from 20,000 to 7,000,000

Measurable Flow Velocities

Liquid Flow......1.5 to 32 ft/s (0.5 to 9 m/s) For liquids, use the following equations to calculate the average flow velocity:

Velocity in $ft/s = 0.4085(Q_1/D^2)$ where Q = volumetric flow (gpm)

D = pipe inside diameter (in.)

Velocity in m/s = $353.7(Q_1/D^2)$ where Q = volumetric flow (m³/h) D = pipe inside diameter (mm)

Gas and Steam Flow $\sqrt{\frac{50}{\rho}}$ to 300 ft/s ($\sqrt{\frac{74}{\rho}}$ to 91 m/s)

where $\rho = \text{density (lb/ft^3)} (\rho = \text{density (kg/m^3)})$

For gases, use the following equations to calculate the average flow velocity:

Velocity in ft/s = $3.056(Q_g/D^2)$ where Q = volumetric flow (ft³/min) D = pipe inside diameter (in.) Repeatability

±0.15% of flow rate

Response Time

Adjustable from 1 to 100 seconds

 $\begin{array}{l} \mbox{Velocity in } m/s = 353.7(Q_g/D^2) \\ \mbox{where} \quad Q = \mbox{volumetric flow } (m^3/h) \\ \mbox{D} = \mbox{pipe inside diameter } (mm) \end{array}$

For steam, use the following equations to calculate the average flow velocity:

Velocity in ft/s = 0.051 $\frac{M}{\rho \bullet D^2}$

where M = mass flow (lbs/hr) D = pipe inside diameter (in) $\rho = fluid density (lbs/ft^3)$ Velocity in m/s = 353.7 $\frac{M}{\rho \bullet D^2}$ where M = mass flow (kg/h) D = pipe inside diameter (mm)

 $r = fluid density (kg/m^3)$

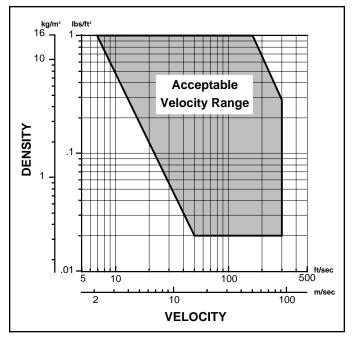


Figure A-1. Density vs. velocity

Process Viscosity

Reynolds number must be > 20,000. The Figure below translates the minimum Reynolds number, 20,000, to the minimum measurable pipe velocity.

Kinematic Viscosity $v = \frac{\mu(cP)}{S.G.}$ Re = $\frac{124\rho VD}{\mu}$

where $\rho =$ fluid density

V = average velocity (lb/ft³) D = pipe inside diameter (in.) μ = fluid viscosity (cP) S.G. = specific gravity

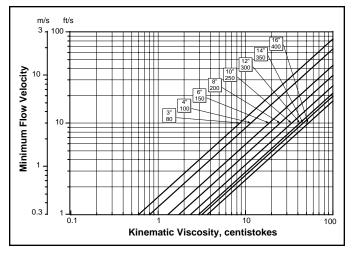


Figure A-2. Viscosity vs. velocity

Process Temperature Limit

V-Bar-600/60S, V-Bar-800/80S, and V-Bar-910 −40 to 400 °F (−40 to 204 °C) V-Bar-700 and V-Bar-960 −40 to 500 °F (−40 to 260 °C)

Ambient Temperature Limit

32 to 140 °F (0 to 60 °C)

Ambient Humidity Limit

5 to 100% relative humidity non-condensing

Process Pressure Limit

V-Bar-600/60S
125 psi (8.62 bar)
V-Bar-700 with NPT connection
2000 psi (138 bar)
V-Bar-700 with flanged connection
According to flange rating, up to 900 psi

V-Bar-800/80S

50 psi (3.45 bar) V-Bar-910/960 According to flange rating, up to 900 psi

Power Requirements

Standard

Isolated 18-40 VAC, 35 mA maximum.

Note: Maximum voltage with pressure transmitter option is 30 volts.

Optional

110/220 VAC

NOTE: All power wiring must be enclosed in rigid conduit and a watertight and/or explosion proof seal applied at the condulet entry.

Output Signals

Analog

4–20 mA, 2-wire system, digitally adjusted span **Frequency**

Voltage pulses, 3-wire system, 0 to 3000 Hz square wave, 50% duty cycle. The pulse output can be scaled so that 1 pulse indicates a specific quantity of fluid passing through the pipe.

- Low Level: 0 to 1 volts
- · High Level: power supply voltage-load
- Hart® communications protocol

Display (LOC-TOT)

2-line by 8-character LCD digital display alternately show flow rate and totalized flow in user-selectable engineering units.

Four buttons (up, down, right, enter) operable either directly on the display panel or with a hand-held magnetic wand through the explosion-proof enclosure enable local programming. Local programming follows the EZ-Logic menu-driven user interface, which is the standard interface for EMCO flowmeter instrumentation.

Zero & Span Setting (analog output only)

Zero and span calibration can be performed without a frequency source by programming the flow rate using the EZ-Logic interface.

Physical Specifications

Materials

Wetted Parts

316L stainless steel or the cast equivalent, CF3M (bronze & carbon steel on V-Bar-600/60S) External Parts

Aluminum, 316 stainless steel, carbon steel (bronze & carbon steel on V-Bar-600/60S)

Electrical Enclosure

383 Aluminum. Approved for NEMA 4X watertight and dusttight requirements.

Retractor Type

V-Bar-600/60S	Screw thread, rising stem
V-Bar-700	Not retractable
V-Bar-800/80S	Manual rising stem
V-Bar-910/960	Acme thread, non-rising

Seal Type

V-Bar-600	Viton [™] O-ring
V-Bar-60SEt	hylene propylene O-ring
V-Bar-700	Swagelok™
V-Bar-800	Viton [™] O-ring
V-Bar-80SEt	hylene propylene O-ring
V-Bar-910	Teflon [™] packing rings
V-Bar-960 Grafoil	1 0 0

Process Connection

V-Bar-600/60S	
V-Bar-700	
	2" 150#, 300#, 600# or 900# ANSI
	raised face flange
V-Bar-800/80S	
	2" 150# ANSI raised face flange
V-Bar-910/960	2" 150#, 300#, 600# or 900# ANSI
	raised face flange

Isolation Valve (V-Bar-600/60S only)

2" full port bronze gate valve, 125 psi (8.62 bar) maximum. For V-Bar-800/80S and V-Bar-910/960, see Accessories.

Pressure Tap and Bleed Valve

Standard ¹/4" NPT pipe nipple with ¹/4" stainless steel bleed valve (bleed valve is bronze for V-Bar-600/60S only). Provides connections for mounting optional pressure transmitter (Model PT).

Model PT Pressure Transmitter (Optional)

A pressure transmitter can be mounted using the ¹/₄" NPT connection on the bleed valve supplied with the meter, eliminating the need for a separate pressure tap. A 4–20 mA output, scaled to the desired pressure range, is provided. All pressure transmitters include a siphon tube, bleed valve, plug, nipple, and tee. A pressure transmitter is not available with 110/220 VAC power. See the PT General Specifications for complete details.

Temperature Sensor (RTD Option)

A 1000 Ω , 3-wire, platinum RTD can be mounted inside the stem of the flowmeter probe, eliminating the need for a separate temperature tap.

Temperature Transmitter (TXX Option)

Includes the RTD option with an additional 4–20 mA output, scaled to the desired temperature range. A temperature transmitter is not available with 110/220 VAC power.

Remote Mount Electronics (RMT Option)

30 ft (9.144 m) signal cable and U-bolts are provided with remote mount electronics. Cable must be run in conduit (conduit not supplied). Conduit connection is 3/4" NPT (PG 13.5).

Approvals

FM Approval (FM Option)

Certified by FM for Class I, Division 2, Groups A, B, C and D; Class II, III, Division 2, Groups F and G.

FM option is not available when using a 4-20 mA temperature transmitter or a 110/220 VAC power supply option. Use the RTD option only for temperature selection, if FM is required.

CSA Approval (CSA Option)

Certified by CSA for Hazardous Locations Class I, Division 2, Groups A, B, C and D; Class II, Division 2, Groups F and G; Class III.

CSA option is not available when using a 4-20 mA temperature transmitter or a 110/220 VAC power supply option. Use the RTD option only for temperature selection, if CSA is required.

Accessories

Gate Valve (Model 2GV) (For use with V-Bar-800/80S and V-Bar-910/960 only)

Installation with a 2" double flanged, raised-face, full port gate valve enables the flow sensor to be inserted and removed from the pipe under full flow conditions. Both the valve and pipe tap must have a minimum 1.875 in. (48 mm) internal diameter clearance.

Flow Rectifier (Model EFR)

A flow rectifier (EFR) is recommended when there is insufficient straight pipe run or flow disturbance. When using an EFR, the straight pipe run can be a combination of 5 pipe diameters upstream and 2 pipe diameters downstream, instead of the standard 10 and 5.

Flow Processors (Models FP-93 and FP-100)

A microprocessor-based flow processor can be used to significantly increase the accuracy and functionality of any flowmetering application. See the FP-93 or FP-100 General Specifications for complete details.

Measurable Flow Rates

	Water Minimum and Maximum Flow Rates ¹						
in.	3	4	6	8	12	16	24
(mm)	(80)	(100)	(150)	(200)	(300)	(400)	(600)
gpm	35	60	135	234	523	826	1,879
	737	1,270	2,882	4,990	11,164	17,625	40,096
m³/h	2	2	9	15	33	52	119
	46	80	182	315	704	1,112	2,530

Table A-1. Water Minimum and Maximum Flow Rates.

Note:

1. Standard conditions of 60 $^\circ\text{F}$ (15 $^\circ\text{C}) and 14.7 psia (1.013 bar) in schedule 40 pipe.$

	Air Minimum and Maximum Flow Rates (SCFM ¹)						
Pressure ² (Density) ³	3"	4"	6"	8"	12"	16"	24"
0	79	136	308	533	1,193	1,883	4,284
(0.0764)	924	1,591	3,611	6,253	13,991	22,089	50,250
50	165	285	646	1,119	2,504	3,954	8,995
(0.3368)	4.073	7,015	15,916	27,561	61,665	97,355	221,469
100	220	380	861	1,491	3,337	5,268	11,984
(0.5979)	7,229	12,452	28,253	48,923	109,461	172,814	393,129
150	264	455	1,033	1,789	4,002	6,318	14,373
(0.8600)	9,449	16,272	36,927	63,943	143,067	225,869	513,823
200	302	520	1,180	2,043	4,571	7,216	16,415
(1.1219)	10,792	18,589	42,175	73,030	163,400	257,971	586,851
300	366	630	1,430	2,476	5,540	8,746	19,896
(1.6480)	13,080	22,530	51,117	88,514	198,044	312,667	711,276
400	420	724	1,643	2,845	6,365	10,050	22,862
(2.1760)	15,030	25,889	58,736	101,709	227,567	359,276	817,305
500	469	807	1,832	3,172	7,098	11,206	25,491
(2.7054)	16,759	28,866	65,493	113,408	253,742	400,602	911,316
	Air Min	imum an	d Maxim	um Flow	Rates (NCMM⁴)	
Pressure ⁵ (Density) ⁶	80 mm	100mm	150mm	200mm	300mm	400mm	600mm
0	2	4	8	14	32	50	115
(1.2238)	25	47	97	167	374	591	1,345
3.4	4	8	17	30	67	106	241
(5.3950)	109	204	426	738	1,650	2,605	5,926
6.9	6	11	23	40	89	141	321
(9.5774)	193	366	756	1,309	2,929	4,624	10,520
11.0	7	14	28	49	110	174	396
(14.6089)	260	492	1,018	1,762	3,942	6,224	14,159
13.8	8	15	32	55	122	193	439
(17.9711)	289	546	1,129	1,954	4,372	6,903	15,704
20.7	10	19	38	66	148	234	532
(26.3985)	350	662	1,368	2,369	5,299	8,367	19,033
27.6	11	21	44	76	170	269	612
(34.8562)	402	761	1,572	2,722	6,089	9,614	21,870
34.5	13	24	49	85	190	300	682
(43.3364)	448	848	1,753	3,035	6,790	10,720	24,386

Table A-2. Air Minimum and Maximum Flow Rates.

Notes:

1. Standard conditions of 60 °F and 14.7 psia in schedule 40 pipe.

psig
 lb/ft³

4. Standard conditions of 15 °C and 1.013 bar in schedule 40 pipe.

5. bar

6. kg/m³

Measurable Flow Rates

Satu	Saturated Steam Minimum and Maximum Flow Rates (lb/h1)						
Pressure ² (Density) ³	3	4	6	8	12	16	24
0 (0.0373)	252 2,069	435 3,563	987 8,087	1,709 14,004	3,823 31,333	6,035 49,468	13,729 112,534
50	506	871	1,976	3,421	7,654	12,085	27,491
(0.1496)	8,297	14,287	32,425	56,148	125,627	198,336	451,189
100	663	1,141	2,589	4,483	10,031	15,837	36,027
(0.2570)	14,250	24,538	55,688	96,431	215,758	340,632	774,893
150 (0.3630)	787 20,116	1,356 34,640	3,076 78,613	5,327 136,129	11,919 304,577	18,817 480,858	42,805 1,093,889
200	894	1,540	3.494	6,051	13,539	21,374	48,624
(0.4682)	25,957	44,698	101,439	175,654	393,013	620,477	1,411,504
300	1.077	1.855	4.209	7.289	16.309	25.748	58.574
(0.6794)	37,667	64,862	147,200	25,895	507,308	900,386	2,048,260
400	1,235	2,127	4,826	8,357	18,698	29,520	67,154
(0.8930)	44,149	76,024	172,531	298,759	668,452	1,055,332	2,400,742
500	1,377	2,371	5,381	9,318	20,849	32,916	74,879
(1.1102)	49,228	84,770	192,380	333,129	745,351	1,176,739	2,676,927
Satu	rated Ste	am Mini	mum and	d Maxim	um Flow	Rates (k	g/h⁴)
Pressure⁵ (Density) ⁶	80	100	150	200	300	400	600
0	114	216	448	775	1,734	2,737	6,227
(0.5980)	938	1,773	3,668	6,352	14,212	22,438	51,045
3.4	230	431	896	1,552	3,472	5,482	12,470
(2.3730)	3,763	7,037	14,708	25,468	56,983	89,964	204,656
6.9	301	568	1,174	2,033	4,550	7,184	16,342
(4.1190)	6,464	12,216	25,260	43,740	97,866	154,508	351,485
11.0	367	693	1,435	2,486	5,561	8,780	19,973
(6.1340)	9,655	18,191	37,731	65,336	146,186	230,793	525,024
13.8	406	766	1,585	2,745	6,141	9,695	22,055
(7.5040)	11,774	22,254	46,012	79,675	178,268	281,444	640,247
20.7 (10.8900)	489 17,085	923 32,294	1,909 66,769	3,306 115,618	7,398 258,687	11,679 408,408	26,569 929,075
	,	,	,	,	,	,	,
27.6 (14.3100)	560 20,026	1,058 37,839	2,189 78,259	3,791 135,515	8,481 303,205	13,390 478,690	30,461 1,088,958
· /	,	,	,	,	,	,	, ,
34.5 (17.8000)	625 22,329	1,180 42,193	2,441 87,262	4,227 151,105	9,457 338,085	14,930 533,760	33,965 1,214,233

Table A-3. Saturated Steam Minimum and Maximum Flow Rates. Notes:

1. Standard conditions of 60 °F and 14.7 psia in schedule 40 pipe.

3. lb/ft³

4. Standard conditions of 15 °C and 1.013 bar in schedule 40 pipe.

5. bar

6. kg/m³

N	Natural Gas Minimum and Maximum Flow Rates (SCFM ¹)						
Pressure ² (Density) ³	3"	4"	6"	8"	12"	16"	24"
0	102	175	398	690	1,543	2,437	5,543
(0.0457)	924	1,588	3,611	6,253	13,991	22,089	50,250
50	217	368	848	1,468	3,284	5,185	11,795
(0.2067)	4,184	7,044	16,352	28,315	63,352	100,019	227,529
100	290	492	1,133	1,962	4,390	6,931	15,768
(0.3695)	7,478	12,588	29,223	50,603	113,221	178,750	406,634
(0.5355) 150 (0.5350)	341 10,590	588 18,236	1,334 41,384	2,309 71,662	5,166 160,338	8,157 253,137	18,555 575.854
200	400	679 23,945	1,563 55,600	2,707 96,279	6,056 215,417	9,561 340,094	21,749 773,669
300	488	829	1,908	3,304	7,392	11,671	26,550
(1.475)		29,623	68,212	118,117	264,278	417,235	949,156
400	565	959	2,209	3,824	8,557	13,510	30,732
(1.4036)	20,204	34,286	78,958	136,725	305,912	482,965	1,098,683
500	635	1,077	2,481	4,297	9,613	15,177	34,526
(1.7715)	22,698	38,513	88,705	153,603	343,676	542,586	1,234,312
Nat	ural Gas	Minimur	n and Ma	aximum	Flow Rat	tes (NCM	M⁴)
Pressure⁵ (Density) ⁶	80mm	100mm	150mm	200mm	300mm	400mm	600mm
0	3	5	11	18	14	65	148
(0.7320)	25	47	97	167	374	591	1,345
3.4	6	11	23	39	88	139	316
(3.3110)	112	205	438	758	1,695	2,676	6,088
6.9	8	14	30	53	117	185	422
(5.9188)	200	371	782	1,354	3,030	4,783	10,881
11.0	10	18	38	65	146	230	523
(9.1033)	308	569	1,203	2,083	4,660	7,357	16,735
13.8	11	20	42	72	162	256	582
(11.2610)	381	706	1,488	2,576	5,764	9,101	20,703
20.7	13	24	51	88	198	312	710
(16.7794)	467	873	1,825	3,161	7,072	11,165	25,399
27.6	15	28	59	102	229	362	822
(22.4835)	541	1,010	2,113	3,659	8,186	12,924	29,400
34.5	17	32	66	115	257	406	924
(28.3767)	607	1.135	2.374	4.110	9.196	14.519	33,029

Table A-4. Natural Gas Minimum and Maximum Flow Rates.

Notes:

1. Standard conditions of 60 °F and 14.7 psia in schedule 40 pipe.

2. psig

3. lb/ft³

4. Standard conditions of 15 °C and 1.013 bar in schedule 40 pipe.

5. bar

6. kg/m³

7. Approximate specific gravity of natural gas = 0.61 and 0.8% N_2 .

^{2.} psig

Model and Suffix Codes

Category	Description			Suffix	Codes	
Model	Liquid or gas service, 400 °F (204 °C)	600				
	Steam service, 400 °F (204 °C)	60S				
	Liquid, gas, or steam service, 500 °F (260 °C)	700				
	Liquid or gas service, 400 °F (204 °C)	800				
	Steam service, 400 °F (204 °C)	80S				
	Liquid, gas, or steam service, 400 °F (204 °C)	910				
	Liquid, gas, or steam service, 500 °F (260 °C)	960				
Connection	2", male NPT (model 700, 800, 80S)		2NPT			
	2", 150# flange (model 700, 800, 80S, 910, 960)		2F150			
	2", 300# flange (model 700, 910, 960)		2F300			
	2", 600# flange (model 700, 910, 960)		2F600			
	2", 900# flange (model 700, 910, 960)		2F900			
	Thread-o-let, xx = 03-80 inches (models 600, 60S) includes 2" isolation valve		VXX			
Pressure	No pressure transmitter			ХХ		
Transmitter	PT for pressure range 0-50 psig (0-3.44 barg)			50		
	0-100 psig (0-6.89 barg)			100		
	0-150 psig (0-10.34 barg)			150		
	0-200 psig (0-13.79 barg)			200		
	0-250 psig (0-17.24 barg)			250		
	0-500 psig (0-34.47 barg)			500		
	0-1000 psig (0-68.95 barg)			1000		
	Special scaling requests ¹			PXX		
Temperature	No temperature transmitter				XXX	
Sensor or Transmitter	Temperature sensor without preamplifier (RTD only) Teflon RTD internal wires -40 to 400 °F (-40 to 204 °C)				RTD-T	
	Temperature sensor without preamplifier (RTD only) Fiberglass RTD internal wires 150 to 800 °F (65 to 427 °C) (models 700 and 960 only)				RTD-F	
	Temperature sensor with preamplifier scaled from 32 to 68 °F (liquid/gas)				T09	
	0 to 250 °F (liquid/gas)				T10	
	-40 to 150 °F (liquid/gas)				T11	
	212 to 400 °F (liquid/gas)				T12	
	212 to 500 °F (steam) (model 700, 910, 960 only)				T14	
	–17.7 to 121.1 °C (liquid/gas)				T20	
	-40 to 65 °C (liquid/gas)				T21	
	100 to 204 °C (steam)				T22	
	100 to 260 °C (liquid/gas) (model 700, 910, 960 only)				T24	
	Special scaling requests ¹				тхх	
Electronics	EZ-Logic with local rate and total ²					 LOC-TOT
	Remote mount electronics ³					 RMT
	FM Approval ⁶					 FM
	CSA Approval ⁷					 CSA
	Integral 110 V ac input ^{4,5}					 110
	Integral 220 V ac input ^{4,5}			I		 220

Table A-5. V-Bar Model and Suffix Codes.

Notes:

- Special transmitter scaling is available. Please note scaling range below model code when ordering. If no special scaling is indicated, transmitter will be scaled per model code.
- 2. Unidirectional only. Unit has 4-20 mA and frequency output.
- 3. The standard remote option comes with 30 feet of cable.
- 4. Not available for use with pressure and temperature transmitters.
- 5. Not available with European CE Mark.
- Certified by FM and CSA for Class I, Division 2, Groups A, B, C, D; Class II, III, Div. 2, Groups F, G. Not approved by FM and CSA when using a 4-20 mA temperature transmitter or a 110/220 VAC power supply option. If FM or CSA is required, use RTD option only for temperature selection.

Please specify the following information with your order:


- Fluid type or composition
- Maximum, minimum, and normal operating flow rate
- · Maximum, minimum, and normal operating temperatures
- · Maximum, minimum, and normal operating pressures
- · Specific weight and viscosity at normal operating conditions

Model PT General Specification

Features

- Process pressure range: 1.5 to 1,000 psi (0.1 to 69 bar)
- Accuracy of ± 0.25% of full scale
- Process temperature range: -40 to 250 °F (-40 to 121 °C)
- > 2-wire, 4 to 20 mA output
- CE Approved
- FM Approved for Class I, Division 2, Groups A, B, C, D; Class II & III, Division 2, Groups F, G

The PT combines micro-machined silicon diaphragms with fully welded stainless steel and hastelloy pressure ports to provide a highly accurate, stable pressure transmitter. It is constructed with the materials and environmental protection required for industrial applications.

The silicon sensors incorporate developments derived from aerospace applications and use them to decrease output noise, non–linearity, and hysteresis and to improve long term stability.

A detachable industrial electrical connector provides access to the independent zero and span trim controls. If any on-site configuration changes to the electrical or pressure connections are required, replacement parts and screw in pressure adaptors are available.

Each transmitter incorporates RFI/EMC and electrical spike protection.

Engineering Measurements Company 303.651.0550 • 303.678.7152 Fax sales@emcoflow.com

Performance Specifications

Accuracy

0.25% of full scale (the best straight line–determined from the combined effects of non-linearity, hysteresis, and repeatability).

Ambient Temperature Effects

For ranges of 5 psi and above, the output will not deviate from room temperature calibration by more than:

2.0% full scale over 15 to 122 °F (-9.4 to 50 °C)

3.0% full scale over -5 to 175 °F (-20.6 to 79.4 °C) Typically:

1.0% full scale over 15 to 122 °F (-9.4 to 50 °C)

2.0% full scale over -5 to 175 °F (-20.6 to 79.4 °C)

For ranges below 5 psi these values will increase pro-rata with calibrated span.

Operating Specifications

Service

Liquid, gas, and steam

Operating Pressure Range

See Table B-1.

Proof Pressure

The rated pressure can be exceeded by $2 \times$ without degrading performance.

Operating Temperature Range

Power Supply Requirements

9 to 30 VAC, across red wire (positive) and blue wire (negative). This voltage must appear across the transmitter terminals.

Output

4 to 20 mA (2–wire configuration) proportional for zero to full scale pressure

Part Number	Pressure Range			
	psig	barg		
011115-1	0 to 50	0 to 3.4		
011115-2	0 to 100	0 to 6.9		
011115-3	0 to 150	0 to 10.3		
011115-4	0 to 200	0 to 13.8		
011115-5	0 to 250	0 to 17.2		
011115-6	0 to 500	0 to 34.5		
011117-2	0 to 1000	0 to 69.0		
011117-1	Customer specified.			

Table B-1. Operating Pressure Range.

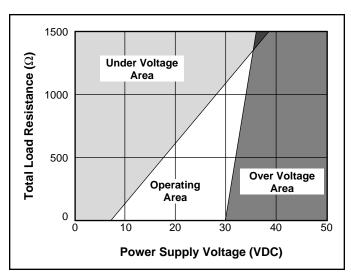


Figure B-1. Operating Pressure Range.

Physical Specifications

Materials of Construction

Isolating Diaphragm	Hastelloy C [®] –276

Pressure Connection

1/4" NPT female

Electrical Connection

Two 22 AWG wires See Figure B-2.

Weight

14 oz nominal

Calibration Standards

Transmitters are calibrated against precision pressure calibration equipment traceable to NIST.

Dimensions

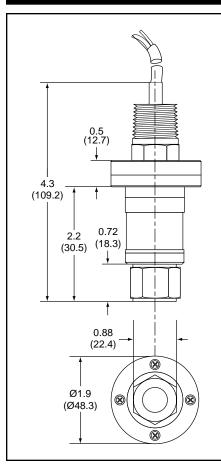
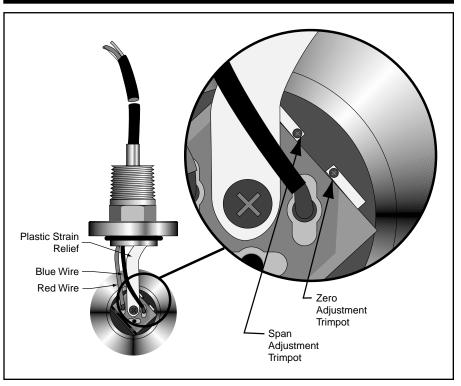
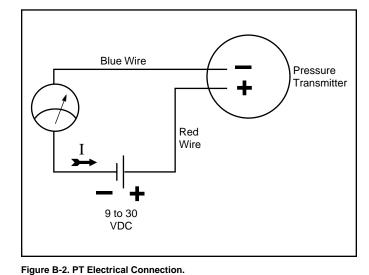
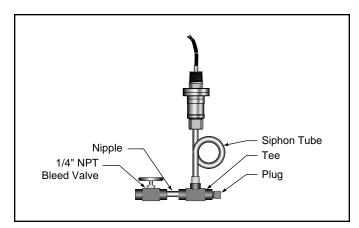



Figure B-3. PT Dimensions.


EMCO

Zero and Span Adjustments


Figure B-4. PT Zero Span Adjustments.

- Zero and span adjustments are made using the trimpots. To gain access to trimpots, disassemble the PT as follows:
- a. Remove the four screws
- b. Gently separate two halves
- c. Adjust zero and span as needed
- d. Replace the connection plate back on the housing

78 Appendix B

Mounting Kit

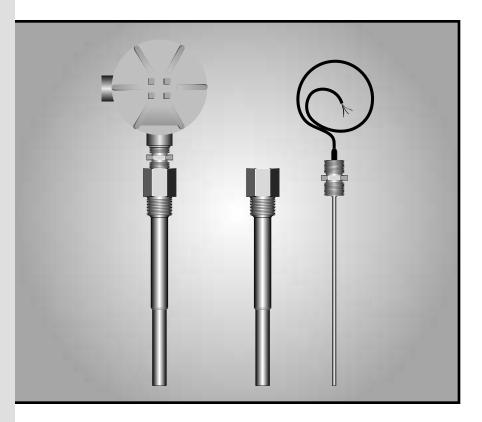
Figure B-5.

Model and Suffix Codes

Description	Part No.
PT for pressure range 0–50 psig (0–3.44 barg)	011115-1
PT for pressure range 0–100 psig (0–6.99 barg)	011115-2
PT for pressure range 0–150 psig (0–10.34 barg)	011115-3
PT for pressure range 0–200 psig (0–13.79 barg)	011115-4
PT for pressure range 0–250 psig (0–17.24 barg)	011115-5
PT for pressure range 0–500 psig (0–34.47 barg)	011115-6
PT for pressure range 0–1000 psig (0–68.95 barg)	011117-2
PT to accommodate special requests and bar scaling. ¹	011117-1
Mounting Kit includes bleed valve, siphon tube, plug, nipple, and tee. Must be used with PT if process temperature is above 250°F (121° C)	010589-4

Table B-2. PT Model and Suffix Codes.

Notes:


- 1. Determine the pressure range that is the most appropriate for your application. Contact your EMCO representative for details.
- 2. Specify the typical service conditions. A siphon tube on the PT is required for all applications above 250 °F (121 °C).

Model TEM General Specification

Features

- RTD or 4-20 mA current output (linear)
- Factory calibrated over selected range
- Rugged design
- Thermowell included

EMCO's TEM platinum resistance temperature sensors measure process fluid temperature for most applications. The TEM uses a resistance temperature device (RTD) to measure process temperature. RTDs operate on the principle that the resistance of the sensing device is proportional to the temperature, producing a highly repeatable and exceptionally stable resistance versus temperature relationship.

The TEM may be selected with either a direct RTD output or with an industry standard 4-20 mA current output. The current output includes a preamplifier that is factory scaled and calibrated to one of several standard temperature ranges in either degrees Fahrenheit or Celsius.

The TEM is thermowell mounted to allow installation and removal without process shutdown. Several immersion lengths are available to accommodate a wide range of pipe sizes.

Engineering Measurements Company 303.651.0550 • 303.678.7152 Fax sales@emcoflow.com

80 Appendix C

Performance Specifications

RTD Sensor

Accuracy (Ice Point) $\pm 0.12\% (1000 \pm 1.2 \Omega)$ Interchangeability Accuracy...... $\pm~0.9~^\circ F~or~0.8\%~(\pm~0.5~^\circ C)$ Stability Better than ± 0.45 °F (± 0.25 °C) per year **Sensing Element Coefficient** 0.00385 Ω/Ω/°C

Preamplifier

Accuracy	
$\pm 0.1\%$ of span	
Ambient Temperature Effect	t
Zero	0.03 + 0.005% of span per °C
Span	0.02 + 0.003% of span per °C

Operating Specifications

Temperature Ranges

Ambient Temperature Limit -30 to 160 °F (-34 to 71 °C) **Storage Temperature Limit** -60 to 185 °F (-51 to 85 °C) **Ambient Humidity Limit** 0 to 100% relative humidity **Thermowell Pressure Limit** 3500 psig (241 barg) at 1140 °F (615 °C)

1 mA recommended, 2 mA maximum

100 m Ω minimum at 300 VAC at 75 °F

Output	Preamplifier Model Suffix Code	Temperature Range
RTD Sensor	RTD	−40 to 800 °F (−40 to 426 °C)
Transmitter	T09	32 to 68 °F
(4 to 20 mA)	T10	0 to 250 °F
	T11	–40 to 150 °F
	T12	212 to 400 °F
	T14	212 to 500 °F
	T13	212 to 800 °F
	T20	–17.7 to 121.1 °C
	T21	–40 to 65 °C
	T22	100 to 204 °C
	T24	100 to 260 °C
	T23	100 to 426 °C

Optional Preamplifier

Insulation Resistance

RTD Sensor Output 3-wire RTD Current

> Output 4 to 20 mA, 2-wire **Power Supply** 24 Vdc nominal, operable from 12 to 40 VAC Load Resistance $600~\Omega$ at 24 VAC; depends upon power supply voltage

Table C-1. Temperature Range.

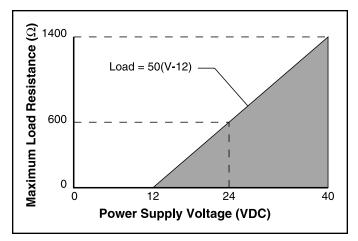


Figure C-1. Permissible Load Resistance Range.

Physical Specifications

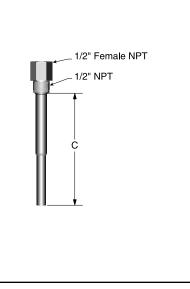
Materials

Dimensions

Sensing Element 1000Ω thin film platinum RTD Sheath 316 stainless steel Junction Box Aluminum Thermowell 316 stainless steel

Process Connection (Thermowell) ¹/₂" NPT

Electrical Connection


Junction box with terminal block for external wiring. ³/₄" NPT female connection for conduit.

Weight (with 6" Thermowell)

3 lb (1.4 kg)

	4.5"		
		Junction Box for Preamplifier or RTD Terminal Strip	
3		_ Wiring Access (3/4" NPT Conduit)	
		- 1/2" NPT	
<u> </u>	II		

1

Thermowell Length Model	А	В	С
Suffix Code	in.	in.	in.
	(mm)	(mm)	(mm)
2"	2.5	9.5	2
	(64)	(241)	(51)
2.5"	3	10	2.5
	(76)	(254)	(64)
3"	3.5	10.5	3
	(89)	(268)	(76)
4"	4.5	11.5	4
	(114)	(292)	(102)
6"	6.5	13.5	6
	(165)	(343)	(152)
8"	8.5	15.5	8
	(216)	(394)	(203)
10"	10.5	17.5	10
	(268)	(444)	(254)
12"	12.5	19.5	12
	(318)	(495)	(305)

Figure C-2. TEM Probe.

EMCO

Note:

Ē

Dimensions are in inches (millimeters).

Figure C-3. Thermowell.

Table C-2. Thermowell Dimensions

82 Appendix C

Model and Suffix Codes

Category	Description		Suffix C	Codes	
Model	Precision RTD with thermowell	TEM-30			
Preamplifier	None (RTD output only)		RTD		
(Temperature	Preamplifier scaled from: 32 to 68 °F (liquid or gas)		T09		
Range)	Preamplifier scaled from: 0 to 250 °F (liquid or gas)		T10		
	Preamplifier scaled from: –40 to 150 °F (liquid or gas)		T11		
	Preamplifier scaled from: 212 to 400 °F (liquid or gas)		T12		
	Preamplifier scaled from: 212 to 500 °F (steam)		T14		
	Preamplifier scaled from: 212 to 800 °F (steam)		T13		
	Preamplifier scaled from: -17.7 to 121.1 °C (liquid or gas)		T20		
	Preamplifier scaled from: -40 to 65 °C (liquid or gas)		T21		
	Preamplifier scaled from: 100 to 204 °C (steam)		T22		
	Preamplifier scaled from: 100 to 260 °C (liquid or gas)		T24		
	Preamplifier scaled from: 100 to 426 °C (steam)		T23		
	Transmitters can be scaled to accommodate special requests and bar scaling		тхх		
Thermowell Length	2" thermowell length			2	
	2.5" thermowell length			25	
	3" thermowell length			3	
	4" thermowell length			4	
	6" thermowell length			6	
	8" thermowell length			8	
	10" thermowell length			10	
	12" thermowell length			12	
RTD wires	Teflon, -40 to 400 °F (-40 to 204 °C)				Т
(internal)	Fiberglass, 150 to 800 °F (65 to 427 °C)				F
Example		TEM-30-	T12	6-	F

Example

TEM-30- T13- 6- F

Table C-3. PT Model and Suffix Codes.

Appendix D: List of Figures and Tables

Figure 1-1.	Principle of Operation
Figure 1-2.	Cross section of the V-Bar Sensor Head
Figure 1-3.	V-Bar-600 Series
Figure 1-4.	V-Bar-700 Series
Figure 1-5.	V-Bar-800 Series
Figure 1-6.	V-Bar-900 Series
Figure 1-7.	Identification Plate for a V-Bar
U	with 110/220 VAC Power Supply
Figure 1-8.	Identification Plate for a V-Bar
U	with a 24 VAC Power Supply
Figure 2-1.	Straight Run Requirements
Figure 2-2.	Meter Location
Figure 2-3.	Non-vertical Mounting
Figure 2-4.	Meter Alignment
Figure 2-5.	Overhead Clearance
Figure 3-1.	Hot Tap Installation for V-Bar-600/60S
Figure 3-2.	Cold Tap Installation for V-Bar-600/60S
Figure 3-3.	V-Bar-600/60S Scale Reading
Figure 3-4.	Insertion Depth Calculation for V-Bar 600/60S
Figure 3-5.	Flowmeter Orientation for V-Bar-600/60S
Figure 3-6.	Orientation Set-Screw Location
Figure 3-7.	Installation for V-Bar-700 with 2" NPT Connection
Figure 3-8.	Installation for V-Bar-700 with Flanged Connection
Figure 3-9.	Insertion Depth Calculation for V-Bar-700
-	with 2" NPT Connection
Figure 3-10.	Insertion Depth Calculation for V-Bar-700
	with Flanged Connection
Figure 3-11.	Final Positioning for V-Bar-700
Figure 3-12.	Flowmeter Alignment for V-Bar-700
Figure 3-13.	Hot Tap Installation for V-Bar-800/80S
	with Flanged Connection
Figure 3-14.	Installation for V-Bar-800/80S with Flanged
	Connection
Figure 3-15.	Installation for V-Bar-800/80S with 2" NPT Connection
Figure 3-16.	Insertion Depth Calculation for V-Bar-800/80S with
	Flanged Connection
Figure 3-17.	Insertion Depth Calculation for V-Bar-800/80S 2" NPT
	Connection
Figure 3-18.	Cap Screw Location
Figure 3-19.	Final Positioning for V-Bar-800/80S
Figure 3-20.	Flowmeter Alignment for V-Bar-800/80S
Figure 3-21.	Hot Tap Installation for V-Bar-910/960
Figure 3-22.	-
Figure 3-23.	Insertion Depth Calculation for V-Bar-910/960
Figure 3-24.	V-Bar-910/960 Scale Reading
Figure 3-25.	Packing Gland Nuts Location
Figure 3-26	Flowmeter Orientation for V-Bar 010/060

Figure 3-26.	Flowmeter	Orientation	for	V-Bar 910/960
--------------	-----------	-------------	-----	---------------

Figure 4-1.	Filter Board for V-Bar
Figure 4-2.	Field Wiring Access
Figure 4-3.	Ground Screw Location
Figure 4-4.	Load Resistance Graph for VAC Power
	with Analog Output
Figure 4-5.	Wiring Diagram for Analog Output with VAC Power
-	(JP1 jumper or no jumpers installed)
Figure 4-6.	Wiring Diagram for Pulse Output with VAC Power (JP2
	jumper installed)
Figure 4-7.	Wiring Diagram for Pulse Output with VAC Power
	(no jumpers installed)
Figure 4-8.	Field Wiring Condulet Location
Figure 4-9.	Wiring Diagram for Pressure and Temperature
	Transmitter with Pulse Output and VAC Power
Figure 4-10.	Wiring Diagram for Pressure and Temperature
	Transmitter with Analog Output and VAC Power
Figure 4-11.	Wiring Diagram for Analog Output with VAC Power
Figure 4-12.	Wiring Diagram for Pulse Output with VAC Power
	(JP2 jumper installed)
Figure 4-13.	Wiring Diagram for Remote Mounted Electronics
Figure 4-14.	Wiring Diagram for Pressure and Temperature
	Transmitter with Remote Mount Electronics
Figure 4-15.	Wiring Diagram for Pressure Transmitter and RTD with
	Remote Mount Electronics
Figure 5-1.	Manual Manipulation of the Keypad
Figure 5-2.	Magnetic Manipulation of the Keypad
Figure 5-3.	EZ-Logic Interface Map
Figure 5-4.	Password Access to Submenus
Figure 5-5.	Linear Analog Output
Figure 5-6.	Linear Scaled Frequency Output
Figure 5-7.	Programmed Defaults
Figure 5-8.	Wiring Diagram for 4-20mA Output Calibration
Figure 6-1.	Electronics Exploded Assembly
Figure 6-2.	Remote Electronics Assembly
Figure 6-3.	Sensor Connection Location on the Filter Board
Figure 6-4.	Wire Identification for Sensor
Figure 6-5.	Orientation Set-Screw Location
Figure 6-6.	Removing the V-Bar-600/60S
Figure 6-7.	Junction Set-Screw Location
Figure 6-8.	Field Wiring Condulet Location
Figure 6-9.	Terminal Block Set Screw Location
Figure 6-10.	Removing the V-Bar-600 Sensor
Figure 6-11.	Vortex Sensor Head Input
Figure 6-12.	V-Bar 600/60S Dimensional Outline
Figure 6-13.	V-Bar-600/60S Integral Assembly
Figure 6-14.	V-Bar-600/60S Remote Assembly
Figure 6-15.	Removing the V-Bar-700

84 Appendix D

Figure 6-16. V-Bar-700 Dimensional Outline Figure 6-17. V-Bar-700 Integral Assembly Figure 6-18. V-Bar-700 Remote Assembly Figure 6-19. Removing the V-Bar-800/80S Figure 6-20. Removing the V-Bar-800 Sensor Figure 6-21. Field Wiring Condulet Location Figure 6-22. Terminal Block Set Screw Location Figure 6-23. Vortex Sensor Head Input Figure 6-24. V-Bar-800/80S Dimensional Outline Figure 6-25. V-Bar-800/80S Integral Assembly Figure 6-26. V-Bar-800/80S Remote Assembly Figure 6-27. Removing the V-Bar-910/960 Figure 6-28 Removing the V-Bar-900 Sensor Figure 6-29 Field Wiring Condulet Location Figure 6-30 Terminal Block Set Screw Location Figure 6-31 Vortex Sensor Head Input Figure 6-32. V-Bar 900/960 Dimensional Outline Figure 6-33. V-Bar-910/960 Integral Assembly Figure 6-34. V-Bar-910/960 Remote Assembly Figure 6-35. TEM Internal Wiring Figure 6-36. Zero and Span Adjustments for TEM Figure A-1. Density Vs. Velocity Figure A-2. Viscosity Vs. Velocity Figure B-1 **Operating Pressure Range** PT Electrical Connection Figure B-2 Figure B-3 PT Dimensions Figure B-4 PT Zero Span Adjustments Figure B-5 PT Mounting Kit Figure C-1 Permissible Load Resistance Range Figure C-2 **TEM Probe** Figure C-3 Thermowell

Table 6-1. Troubleshooting Chart

- Table A-1. Water Minimum and Maximum Flow Rates
- Table A-2. Air Minimum and Maximum Flow Rates
- Table A-3. Saturated Steam Minimum and Maximum Flow Rates
- Table A-4. Natural Gas Minimum and Maximum Flow Rates
- Table A-5. V-Bar Model and Suffix Codes
- Table B-1.Operating Pressure Range
- Table B-2. PT Model and Suffix Codes
- Table C-1. Temperature Range
- Table C-2. Thermowell Dimensions
- Table C-3. PT Model and Suffix codes

Appendix E: How to Contact Us ____

Quality Statement

Customer satisfaction is the ultimate measure of quality.

Contact

- Phone: (303) 651-0550
- Fax: (303) 678-7152
- E-mail: sales@emcoflow.com
- For technical support, ask for an Applications Engineer.
- To place an order, ask for Customer Service.

Returns

- Call or fax Customer Service for a Return Material Authorization (RMA) number before returning equipment.
- Put the RMA number on the shipping label, and also on a written description of the problem.
- A restocking charge of 25% of the net price is charged for all standard units returned to stock within 6 months.

Glossary

ac Alternating current; an electric current that reverses direction at regular intervals.

ambient temperature the average or mean temperature of the surrounding air which comes in contact with the equipment and instruments in use.

analog output a voltage or current signal that is a continuous function of the measured parameter (i.e. flow, pressure, temperature).

ANSI American National Standards Institute, the primary organization for fostering the development of technology standards in the United States.

AWG American Wire Gauge; A standard of the dimensional characteristics of wire used to conduct electrical current or signals.

bbl Barrel

°C Degrees Celsius

CE A manufacturer's mark that demonstrates compliance with European Union (EU) laws governing products sold in Europe.

cm centimeter

cm³ cubic centimeter

CMOS Complementary Metal Oxide Semiconductor; A kind of integrated circuit used in processors and memories.

cold tap See tap.

conduit A channel or pipe for carrying fluids or a tube or trough for protecting electrical wires.

cP Centipoise.

dc Direct current; an electric current of constant magnitude flowing in one direction only.

density Mass per unit of volume of a substance. (i.e. g/cm³, lb/ft³).

downstream In flowmetering, the piping from the point of flow measurement that is in the direction of flow.

ESD Electrostatic discharge

/ EMCO

°F Degrees Fahrenheit

FM Factory Mutual Research Corporation; An organization which sets industrial safety standards.

frequency output An oscillating or varying current, where frequency is the number of complete cycles per second in alternating current direction. The standard unit of frequency is the hertz, abbreviated Hz. If a current completes one cycle per second, then the frequency is 1 Hz; 60 cycles per second equals 60 Hz (the standard alternating-current utility frequency). Larger units of frequency include the kilohertz (kHz) representing thousands (1,000's) of cycles per second, the megahertz (MHz) representing millions (1,000,000's) of cycles per second.

- ft Foot
- ft² Square foot
- ft³ Cubic foot
- g Gram
- gal Gallon
- h Hour
- hot tap See tap

Hz Hertz

impedance The total opposition to electrical flow (resistive plus reactive).

in. Inch.

insertion depth the measured length that positions the sensor into the pipe.

ISO International Standards Organization

jumper A pair of prongs that are electrical contact points set into an electronic board. When you set a jumper, you place a plug on the prongs that completes a contact. The jumper settings tell the microprocessor how it is configured and what operations can be performed.

kg Kilogram

kHz Kilohertz

88

lb pound
m Meter
m ³ Cubic meter
mA Milliamp
max. Maximum
min Minute
min. Minimum
mm Millimeter
$\mathbf{m}\Omega$ Megohm
ms Millisecond

NEMA 4X A standard from the National Electrical Manufacturer's Association) which defines enclosures intended for indoor or outdoor use, primarily to provide a degree of protection against windblown dust and rain, splashing water, and hose-directed water.

NIST National Institute of Standards & Technology

NPT National Pipe Thread

 Ω ohm

output The electrical signal measured at the output terminals which is produced by an applied input to a transducer.

upstream In flowmetering, the piping from the point of flowmeter that is against the direction of flow.

resistance A measure of the extent to which a substance opposes the movement of electrons among atoms. The more easily the atoms give up and/or accept electrons, the lower the resistance. It is always a positive real-number quantity. Resistance is observed with ac and dc voltage. The standard unit of resistance is the ohm, sometimes written out as a word, and sometimes symbolized by the uppercase Greek letter omega. When an electric current of one ampere passes through a component across which a potential difference (voltage) of one volt exists, then the resistance of that component is one ohm. **Reynolds Number** The ratio of inertial and viscous forces in a fluid defined by the formula $\text{Re} = \rho VD/\mu$, where: $\rho = \text{Density}$ of fluid, $\mu = \text{Viscosity}$ in centipoise (cP), V = Velocity, and D = Inside diameter of pipe.

RTD Resistance Temperature Detector

s Second

tap To cut a hole in a pipe. A hot tap is performed while there is flow and/or pressure in the pipe being cut. A cold tap is performed when there is no flow or pressure in the pipe.

terminal An input/output device used to enter data into a computer and record the output.

terminal block A group of terminals mounted as one unit.

thread-o-let A threaded steel fitting that is welded to a pipe to provide a mounting for a flowmeter with an NPT connection.

transmitter A device that coverts a physical phenomenon (i.e. flow, pressure, temperature) and converts it to a 4-20 mA 2-wire output.

V Volt

velocity The time rate of change of displacement; dx/dt.

viscosity The inherent resistance of a substance to flow.

weld-o-let A steel fitting that is welded to a pipe to provide a mounting for equipment which does not have threads and may require welding.

Index

Α

AC 3, 22-23, 69-70 Accessing Programming Submenus 31 Accessories 70-71 Accuracy 67-68, 71, 75-76, 80 ACME 2, 70 Activate 27 Adjustments R-box 66 Air 68 Align 9, 11–12, 15, 17–18 Alter Preset Data 30 Aluminum 70, 81 Ambient Humidity Limit 69, 80 Ambient Temperature 19, 69, 76, 80 Analog 20-23, 32-34, 39, 68-69 ANSI 2, 70 **Applied Pipeline Sizes 68** Approvals 2, 70 Approved 2, 70, 73, 75 Assembly 9, 17, 43-44, 50-51, 54-55, 59-61, 64-65 Attach 7, 9-10, 12, 16, 24 AWG 20, 77 В Bar Graph 31, 41

С

Cable 20, 23–24, 70, 73 Calculation 8, 16 Calibration 2, 38, 40, 66, 69, 76–77 Cap Screw Location 15 CE 2, 73, 75 Certified 70, 73 Class I 70, 73, 75 Class II 70, 73, 75 Class III 70 CMOS 43 Cold Tap Installation 7, 13, 16 Conduit 19, 24, 69–70, 81 ConFigure 27 Connect 7, 12-13, 16, 20, 23 **Cross Section 1** CSA 70, 73 Current 21-22, 40, 79-80 D DC 2-3, 20-23, 41, 66-67, 69, 76, 80 Density 37, 68-69 Depressurize 46, 52 Depth Calculation 7-11, 13-14, 16-17 Detach 52, 56, 61 Diagnose 27 **Dimensions Table 81**

Basic Menu 27, 30-31, 33, 40

Bleed Valve 7-10, 12-13, 16, 46, 56, 61, 70

Direct 34–35, 79, 86, 88	Flow Processors 71		
Direct Frequency 34–35, 88	Flow Rate 1, 22, 30–31, 33, 36, 41–42, 67–69, 73		
Disable 34, 41	Flow Rectifier 68, 71		
Disconnect 46, 52, 56–57, 61–62	Flow Unit 30–32		
Display 1, 27, 30–31, 33, 39, 41–43, 69	Flowmeter 1–2, 5–7, 9, 12, 15, 18–19, 27, 31, 46, 52, 56–57, 61–62, 67, 69–70		
E	Flowmeter Alignment 12, 15, 83		
EFR 71	Flowmeter Orientation 9, 18, 83		
Electrical Connection 77, 81	Flowmeter Removal 46, 52, 56–57, 61–62		
Electrical Enclosure 70	Fluid Density 37, 68–69		
Electrical Installation 19	Fluid Menu 27, 37		
Electronics 1–2, 19–20, 23–25, 31, 43–44, 46, 57, 62, 67, 70	Fluid Temperature 38, 79		
Electronics Removal 19, 43, 46, 57, 62	Fluid Types 67–68		
Electronics Removal 43	Fluid Viscosity 37, 69		
EMC 75	FM 70, 73, 75		
Equipment Inspection 2	FP-100 71		
Error Code 31, 40, 41	FP-93 71		
ESD 46	Frequency 1, 31–32, 34–36, 39–40, 67, 69, 73		
Ethylene 70	Frequency Output 1, 32, 34–35, 39, 67, 73		
European CE Mark 73	Frequency Output Time Constant 34–35		
Example 8, 10, 14, 17, 28, 66, 82	G		
External Parts 70	Gas 19, 67–68, 72, 76		
EZ-Logic 1, 3, 27, 29, 34, 67, 69	Gate Valve 70–71		
F	General Specification 67, 75, 79		
Features 1–2, 67, 75, 79	Gently 43, 77		
Filter Board 19, 43–44, 46, 57, 62	Grafoil 70		
Flange 2, 9–10, 12–17, 69–70	Ground Screw Location 20		
Flanged Connection 9–14, 56, 69	Grounding 20		

Н

Hardware Configuration 19 HART 1, 27, 41, 67, 69 Hazardous Locations Class I 70 Hot Tap 7, 12, 15-161 Hot Tap Installation 7, 12, 15–16 Hz 32, 34-35, 39, 69 L Ice Point 80 Identification Plate 2-3 Input 1, 33, 37, 39-40, 47-48, 57, 62 Insertion Depth 1, 7-17, 56 Insertion Depth Calculation 7–11, 13–14, 16–17 Installation 1, 5–10, 12–13, 15–16, 19, 46, 52, 56, 61, 67, 71, 79 Insulate 20, 24 **Insulation Resistance 80** Integral 1-2, 19, 23, 46, 50, 54, 59, 64, 67 **Integral Electronics 23** Interface 1, 3, 27-29, 67, 69 Interface Map 3, 27, 29 Isolation Valve 1-2, 7-8, 12, 16, 46, 56, 61, 67, 70 J Jumpers 19-21, 23 Junction Box 23-24, 66, 81 Junction Set-Screw 47

Κ

K-factor 35, 38 Keypad 27, 67 Keys 27-28, 33, 42 L LCD 69 Linear Analog Output 33-34 Linear Range 68 Linear Scaled Frequency Output 34 Liquid 19, 67-68, 76 Load 20-23, 80 Load Resistance 20-22, 80 LOC-TOT 69 М M-Factor 33 Magnetic Manipulation 27 Maintenance 1, 19, 27, 31, 40 Mass 67–68 Materials of Construction 77 Maximum Flow 32–34, 36, 40 Maximum Output Frequency 34, 89 Measurable Flow Rates 71–72 Measurable Flow Velocities 68 Measuring 1, 8, 10, 14, 17, 22 Mechanical Installation 7-10, 13, 16, 46, 52, 61 Meter Alignment 6 Meter Location 6

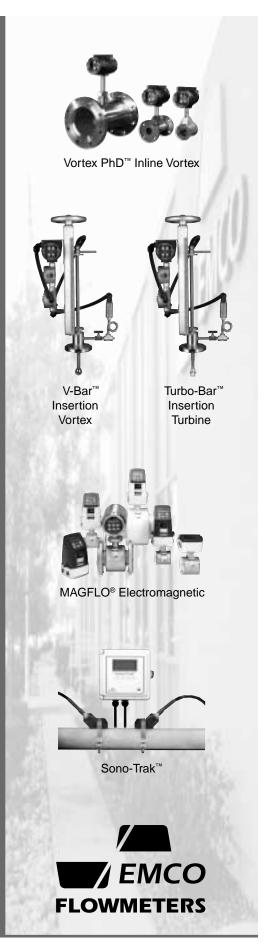
Minimum Flow 31–34	Ρ
Model EFR 71	Packing Gland Nuts 17–18, 61
Model PT General Specification 75	Password 27, 31–32, 41
Model PT Pressure Transmitter 70	Performance Specifications 68, 76, 80
Model TEM General Specification 79	Physical Specifications 70, 77, 81
Model V Bar 67	Pipe 1, 5–18, 20, 35, 38, 46, 57, 61–62, 67–72, 79
Model V-Bar Operation 1	Power Requirements 69
Models FP-93 71	Power Supply 3, 20–23, 43, 66, 69–70, 73, 76, 80
Mounting 2, 6, 11, 13–14, 17, 19–20, 24, 46, 52, 56, 61, 70, 78	Preamplifier 79–80
N	Pressure 1–2, 7–13, 16, 20–22, 24–25, 46, 52, 56–57, 61–62, 67, 69–70, 73, 75–78, 80
Natural Gas 72	Pressure Connection 77
Noise Level 33	Pressure Tap 70
Non-vertical Mounting 6	Pressure Transmitter 1, 7–10, 12–13, 16, 20–22, 25, 46, 57, 62, 69–70, 75
NPT 2, 9–11, 13–14, 56, 69–70, 77, 81 NPT Connection 9–11, 13–14, 56, 69–70	Principle of Operation 1
	Process Connection 70, 81
0	Process Media 76
O-ring 70	Process Pressure Limit 69
Operating Pressure Range 76	Process Pressure Range 75
Operating Specifications 68, 76, 80	Process Temperature Limit 69
Operating Temperature Range 76	Process Temperature Range 75
Optional Preamplifier 80	Process Viscosity 6
Orientation Set-Screw 9, 46	Programming Submenus 27–28, 31, 42
Output 1, 19–23, 27, 32–36, 39–40, 66–70, 73, 75–76, 79–80	Proof Pressure 76
Output Menu 27, 33–34	Pulse 1, 19–23, 31, 34–37, 39, 67, 69
Output Signals 67, 69	Pulse Output 19–23, 34, 39, 67, 69
Overhead Clearance 6	Pulse Output Setup 34, 39

S Pulse Unit 35-37 Pulse Width 36 Scale Reading 8, 16-17 R Scaled Frequency 32, 34 R-box 66 Screw 15, 17, 20, 24, 46-47, 56-57, 62, 70, 75 Real Number Data 28 Seal Type 70 Reassemble 43 Self Diagnostics 40, 89 **Reference Density 37** Sensing Element 80-81 Reinstall 46, 52, 56, 61 Sensor 1-2, 7-10, 13-14, 16-17, 19-20, 27, 35, 38, 40, 43-44, 46-48, 52, 57, 62, 67, 70-71, 80 Remote 2, 19–20, 23–25, 44, 46, 51, 55, 60, 65, 70, 73 Sensor Functionality Test 46 Remote Assembly 51, 55, 60, 65 Sensor Menu 27, 38 Remote Electronics 2, 20, 23-25, 44 Sensor Removal 46, 52, 57, 62 Remote Mount Electronics 25, 70 Service Menu 27, 39 **Remote Mounted Electronics 24** Set 31, 33, 35-41, 43, 46-47, 57, 62, 66 Remote Wiring 23 Setting 31, 33, 69 Remote Wiring Output 23 Simulated Analog Output 39 Repeatability 68, 76 Simulated Frequency Output 39 Reset Menu 27, 38 Span 66, 69, 75-77, 80 Resistance 20-22, 46, 66, 79-80 Specifications 68, 70-71, 76-77, 80-81 **Response Time 68** Stability 75, 80 **Restoring Defaults 88** Steam 67-68, 76 Retract 9, 11, 14, 17, 46, 52, 61 Steam Flow 68 Retractor Type 70 Stem 1-2, 8-12, 14-15, 17-18, 46-48, 52, 56-57, Reynolds 37, 68-69, 87 61-62, 68, 70 RTD 25, 66, 70, 73, 79-81 Storage 76, 80 **RTD Sensor 80** Storage Temperature Limit 80 **RTD Sheath 81** Straight Run Requirements 5 Submenus 27-28, 31-32, 42

TXX Option 70

U-bolts 70

U


Substitute Frequency 39, 89–90	V
Suffix Codes 73, 78, 82	VAC 3, 20–23, 41, 66, 69, 76, 80
Swagelok 11, 52, 70	VAC 73
т	Velocity 1, 35, 68–69, 87
Tap 7, 9, 12–13, 15–16, 67, 70–71	Viscosity 37, 69, 73, 87-88, 91
Teflon 7, 9, 13, 70	Viton O–ring 70
TEM 66, 79, 81	Voltage 20–22, 66, 69, 76, 80
TEM Internal Wiring 66	Vortex 1, 34-35, 39-40, 47-48, 57, 62, 67
TEM Probe 81	Vortex Frequency 34–35, 39–40
TEM Wiring 66	Vortex Sensor Head Input 47-48, 57, 62
Temperature Range 1–2, 70, 75–76, 79–80	W
Temperature Sensor 70	Water 68, 84, 87
Temperature Transmitter 1, 22, 24–25, 66, 70, 73	Weld 7, 9–10, 12–13, 15–16
Terminal 20, 23, 47, 57, 62, 66, 76, 81	Wetted Parts 70
Thermowell 79–81	Wire Identification 46
Thermowell Pressure Limit 80	Wiring 2, 19–25, 40, 47, 57, 62, 66, 69, 81
Totalized Flow 1, 30, 32, 69	
Totalizer 30-32, 35-36, 38, 41	
Totalizer Unit 30, 32	
Transducer Body 77	
Transmitter Wiring 20	
Transmitters 20, 22, 70, 73, 77	
Troubleshooting 19, 31, 40, 45	

Providing innovative flowmeter products and services for over three decades ...

Engineering Measurements Company (EMCO) is a long established manufacturer of precision flowmeters for liquid, gas, and steam applications for commerce and industry. Manufacturing under an ISO 9001 certified quality system, which includes extensive flow calibration capability, engineering, applications, and service, underpins a world-wide sales and service organization totally focused on providing the best flowmeters and customer service in the industry.

- Manufacturing is housed in a modern plant located in Longmont, Colorado
- Modern clean-room, mechanized assembly equipment, and computer based testing ensure the highest quality product
- Trained professional flow specialists and technicians offer timely customer assistance
- Factory trained and certified field technicians provide product support services

P/N 990339 Rev. D Specifications subject to change without notice.

Engineering Measurements Company

600 Diagonal Hwy. • Longmont, CO 80501 • 303.651.0550 • Fax 303.678.7152 • sales@emcoflow.com